| Known Direct Subclasses | 
Represents a potentially large list of independent elements (samples), and allows iteration and transformations to be performed across these elements.
Public Constructors
Public Methods
| final Dataset | 
 
batch(long batchSize, boolean dropLastBatch)
                
                   
Groups elements of this dataset into batches. 
 | 
| final Dataset | 
 
batch(long batchSize)
                
                   
Groups elements of this dataset into batches. 
 | 
| static Dataset | 
 
fromTensorSlices(Ops tf, List<Operand<?>> tensors, List<Class<? extends TType>> outputTypes)
                
                   
Creates an in-memory `Dataset` whose elements are slices of the given tensors. 
 | 
| Ops | |
| List<Shape> | 
 
getOutputShapes()
                
                   
Get a list of shapes for each component of this dataset. 
 | 
| List<Class<? extends TType>> | 
 
getOutputTypes()
                
                   
Get a list of output types for each component of this dataset. 
 | 
| Operand<?> | 
 
getVariant()
                
                   
Get the variant tensor representing this dataset. 
 | 
| Iterator<List<Operand<?>>> | 
 
iterator()
                
                   
Creates an iterator which iterates through all batches of this Dataset in an eager fashion. 
 | 
| DatasetIterator | 
 
makeInitializeableIterator()
                
                   
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset. 
 | 
| DatasetIterator | 
 
makeOneShotIterator()
                
                   
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset. 
 | 
| Dataset | |
| Dataset | 
 
mapAllComponents(Function<Operand<?>, Operand<?>> mapper)
                
                   
Returns a new Dataset which maps a function across all elements from this dataset, on all
 components of each element. 
 | 
| Dataset | 
 
mapOneComponent(int index, Function<Operand<?>, Operand<?>> mapper)
                
                   
Returns a new Dataset which maps a function across all elements from this dataset, on a single
 component of each element. 
 | 
| final Dataset | 
 
skip(long count)
                
                   
Returns a new `Dataset` which skips `count` initial elements from this dataset 
 | 
| final Dataset | 
 
take(long count)
                
                   
Returns a new `Dataset` with only the first `count` elements from this dataset. 
 | 
| static Dataset | 
 
textLineDataset(Ops tf, String filename, String compressionType, long bufferSize)
                
               
 | 
| static Dataset | 
 
tfRecordDataset(Ops tf, String filename, String compressionType, long bufferSize)
                
               
 | 
| String | 
 
toString()
                
               
 | 
Inherited Methods
Public Constructors
Public Methods
public final Dataset batch (long batchSize, boolean dropLastBatch)
Groups elements of this dataset into batches.
Parameters
| batchSize | The number of desired elements per batch | 
|---|---|
| dropLastBatch | Whether to leave out the final batch if it has fewer than `batchSize` elements. | 
Returns
- A batched Dataset
 
public final Dataset batch (long batchSize)
Groups elements of this dataset into batches. Includes the last batch, even if it has fewer than `batchSize` elements.
Parameters
| batchSize | The number of desired elements per batch | 
|---|
Returns
- A batched Dataset
 
public static Dataset fromTensorSlices (Ops tf, List<Operand<?>> tensors, List<Class<? extends TType>> outputTypes)
Creates an in-memory `Dataset` whose elements are slices of the given tensors. Each element of
 this dataset will be a List<Operand<?>>, representing slices (e.g. batches) of the
 provided tensors.
Parameters
| tf | Ops Accessor | 
|---|---|
| tensors | A list of Operand<?> representing components of this dataset (e.g.
     features, labels) | 
| outputTypes | A list of tensor type classes representing the data type of each component of this dataset. | 
Returns
- A new `Dataset`
 
public Ops getOpsInstance ()
public List<Class<? extends TType>> getOutputTypes ()
Get a list of output types for each component of this dataset.
public Iterator<List<Operand<?>>> iterator ()
Creates an iterator which iterates through all batches of this Dataset in an eager fashion. Each batch is a list of components, returned as `Output` objects.
This method enables for-each iteration through batches when running in eager mode. For Graph mode batch iteration, see `makeOneShotIterator`.
Returns
- an Iterator through batches of this dataset.
 
public DatasetIterator makeInitializeableIterator ()
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset.
This iterator will have to be initialized with a call to `iterator.makeInitializer(Dataset)` before elements can be retreived in a loop.
Returns
- A new `DatasetIterator` based on this dataset's structure.
 
public DatasetIterator makeOneShotIterator ()
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset. Using `makeOneShotIterator` ensures that the iterator is automatically initialized on this dataset. skips In graph mode, the initializer op will be added to the Graph's intitializer list, which must be run via `tf.init()`:
Ex:
     try (Session session = new Session(graph) {
         // Immediately run initializers
         session.run(tf.init());
     }
 In eager mode, the initializer will be run automatically as a result of this call.
Returns
- A new `DatasetIterator` based on this dataset's structure.
 
public Dataset map (Function<List<Operand<?>>, List<Operand<?>>> mapper)
Returns a new Dataset which maps a function over all elements returned by this dataset.
For example, suppose each element is a List<Operand<?>> with 2 components: (features,
 labels).
 
Calling
dataset.map(components -> {
      Operand<?> features = components.get(0);
      Operand<?> labels   = components.get(1);
      return Arrays.asList(
        tf.math.mul(features, tf.constant(2)),
        tf.math.mul(labels, tf.constant(5))
      );
 );
 }Parameters
| mapper | The function to apply to each element of this iterator. | 
|---|
Returns
- A new Dataset applying `mapper` to each element of this iterator.
 
public Dataset mapAllComponents (Function<Operand<?>, Operand<?>> mapper)
Returns a new Dataset which maps a function across all elements from this dataset, on all components of each element.
For example, suppose each element is a List<Operand<?>> with 2 components: (features,
 labels).
 
Calling dataset.mapAllComponents(component -> tf.math.mul(component,
 tf.constant(2))) will map the function over the both the `features` and `labels` components of
 each element, multiplying them all by 2
Parameters
| mapper | The function to apply to each component | 
|---|
Returns
- A new Dataset applying `mapper` to all components of each element.
 
public Dataset mapOneComponent (int index, Function<Operand<?>, Operand<?>> mapper)
Returns a new Dataset which maps a function across all elements from this dataset, on a single component of each element.
For example, suppose each element is a List<Operand<?>> with 2 components: (features,
 labels).
 
Calling dataset.mapOneComponent(0, features -> tf.math.mul(features, tf.constant(2))) will
 map the function over the `features` component of each element, multiplying each by 2.
Parameters
| index | The index of the component to transform. | 
|---|---|
| mapper | The function to apply to the target component. | 
Returns
- A new Dataset applying `mapper` to the component at the chosen index.
 
public final Dataset skip (long count)
Returns a new `Dataset` which skips `count` initial elements from this dataset
Parameters
| count | The number of elements to `skip` to form the new dataset. | 
|---|
Returns
- A new Dataset with `count` elements removed.
 
public final Dataset take (long count)
Returns a new `Dataset` with only the first `count` elements from this dataset.
Parameters
| count | The number of elements to "take" from this dataset. | 
|---|
Returns
- A new Dataset containing the first `count` elements from this dataset.