| Abort |
Raise a exception to abort the process when called. |
| Abs<T extends TNumber> |
Computes the absolute value of a tensor. |
| AccumulateN<T extends TType> |
Returns the element-wise sum of a list of tensors. |
| AccumulatorApplyGradient |
Applies a gradient to a given accumulator. |
| AccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators. |
| AccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step. |
| AccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator. |
| Acos<T extends TType> |
Computes acos of x element-wise. |
| Acosh<T extends TType> |
Computes inverse hyperbolic cosine of x element-wise. |
| Add<T extends TType> |
Returns x + y element-wise. |
| AddManySparseToTensorsMap |
Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. |
| AddN<T extends TType> |
Add all input tensors element wise. |
| AddSparseToTensorsMap |
Add a `SparseTensor` to a `SparseTensorsMap` return its handle. |
| AdjustContrast<T extends TNumber> |
Adjust the contrast of one or more images. |
| AdjustHue<T extends TNumber> |
Adjust the hue of one or more images. |
| AdjustSaturation<T extends TNumber> |
Adjust the saturation of one or more images. |
| All |
Computes the "logical and" of elements across dimensions of a tensor. |
| AllCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
| AllReduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
| AllToAll<T extends TType> |
An Op to exchange data across TPU replicas. |
| Angle<U extends TNumber> |
Returns the argument of a complex number. |
| AnonymousIterator |
A container for an iterator resource. |
| AnonymousMemoryCache |
|
| AnonymousMultiDeviceIterator |
A container for a multi device iterator resource. |
| AnonymousRandomSeedGenerator |
|
| AnonymousSeedGenerator |
|
| Any |
Computes the "logical or" of elements across dimensions of a tensor. |
| ApplyAdaMax<T extends TType> |
Update '*var' according to the AdaMax algorithm. |
| ApplyAdadelta<T extends TType> |
Update '*var' according to the adadelta scheme. |
| ApplyAdagrad<T extends TType> |
Update '*var' according to the adagrad scheme. |
| ApplyAdagradDa<T extends TType> |
Update '*var' according to the proximal adagrad scheme. |
| ApplyAdagradV2<T extends TType> |
Update '*var' according to the adagrad scheme. |
| ApplyAdam<T extends TType> |
Update '*var' according to the Adam algorithm. |
| ApplyAddSign<T extends TType> |
Update '*var' according to the AddSign update. |
| ApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm. |
| ApplyFtrl<T extends TType> |
Update '*var' according to the Ftrl-proximal scheme. |
| ApplyGradientDescent<T extends TType> |
Update '*var' by subtracting 'alpha' * 'delta' from it. |
| ApplyMomentum<T extends TType> |
Update '*var' according to the momentum scheme. |
| ApplyPowerSign<T extends TType> |
Update '*var' according to the AddSign update. |
| ApplyProximalAdagrad<T extends TType> |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
| ApplyProximalGradientDescent<T extends TType> |
Update '*var' as FOBOS algorithm with fixed learning rate. |
| ApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm. |
| ApproximateEqual |
Returns the truth value of abs(x-y) < tolerance element-wise. |
| ArgMax<V extends TNumber> |
Returns the index with the largest value across dimensions of a tensor. |
| ArgMin<V extends TNumber> |
Returns the index with the smallest value across dimensions of a tensor. |
| AsString |
Converts each entry in the given tensor to strings. |
| Asin<T extends TType> |
Computes the trignometric inverse sine of x element-wise. |
| Asinh<T extends TType> |
Computes inverse hyperbolic sine of x element-wise. |
| AssertCardinalityDataset |
|
| AssertNextDataset |
|
| AssertThat |
Asserts that the given condition is true. |
| Assign<T extends TType> |
Update 'ref' by assigning 'value' to it. |
| AssignAdd<T extends TType> |
Update 'ref' by adding 'value' to it. |
| AssignAddVariableOp |
Adds a value to the current value of a variable. |
| AssignSub<T extends TType> |
Update 'ref' by subtracting 'value' from it. |
| AssignSubVariableOp |
Subtracts a value from the current value of a variable. |
| AssignVariableOp |
Assigns a new value to a variable. |
| Atan<T extends TType> |
Computes the trignometric inverse tangent of x element-wise. |
| Atan2<T extends TNumber> |
Computes arctangent of `y/x` element-wise, respecting signs of the arguments. |
| Atanh<T extends TType> |
Computes inverse hyperbolic tangent of x element-wise. |
| AudioSpectrogram |
Produces a visualization of audio data over time. |
| AudioSummary |
Outputs a `Summary` protocol buffer with audio. |
| AutoShardDataset |
Creates a dataset that shards the input dataset. |
| AvgPool<T extends TNumber> |
Performs average pooling on the input. |
| AvgPool3d<T extends TNumber> |
Performs 3D average pooling on the input. |
| AvgPool3dGrad<T extends TNumber> |
Computes gradients of average pooling function. |
| AvgPoolGrad<T extends TNumber> |
Computes gradients of the average pooling function. |
| BandPart<T extends TType> |
Copy a tensor setting everything outside a central band in each innermost matrix to zero. |
| BandedTriangularSolve<T extends TType> |
|
| Barrier |
Defines a barrier that persists across different graph executions. |
| BarrierClose |
Closes the given barrier. |
| BarrierIncompleteSize |
Computes the number of incomplete elements in the given barrier. |
| BarrierInsertMany |
For each key, assigns the respective value to the specified component. |
| BarrierReadySize |
Computes the number of complete elements in the given barrier. |
| BarrierTakeMany |
Takes the given number of completed elements from a barrier. |
| Batch |
Batches all input tensors nondeterministically. |
| BatchCholesky<T extends TNumber> |
|
| BatchCholeskyGrad<T extends TNumber> |
|
| BatchDataset |
Creates a dataset that batches `batch_size` elements from `input_dataset`. |
| BatchFft |
|
| BatchFft2d |
|
| BatchFft3d |
|
| BatchIfft |
|
| BatchIfft2d |
|
| BatchIfft3d |
|
| BatchMatMul<T extends TType> |
Multiplies slices of two tensors in batches. |
| BatchMatrixBandPart<T extends TType> |
|
| BatchMatrixDeterminant<T extends TType> |
|
| BatchMatrixDiag<T extends TType> |
|
| BatchMatrixDiagPart<T extends TType> |
|
| BatchMatrixInverse<T extends TNumber> |
|
| BatchMatrixSetDiag<T extends TType> |
|
| BatchMatrixSolve<T extends TNumber> |
|
| BatchMatrixSolveLs<T extends TNumber> |
|
| BatchMatrixTriangularSolve<T extends TNumber> |
|
| BatchNormWithGlobalNormalization<T extends TType> |
Batch normalization. |
| BatchNormWithGlobalNormalizationGrad<T extends TType> |
Gradients for batch normalization. |
| BatchSelfAdjointEig<T extends TNumber> |
|
| BatchSvd<T extends TType> |
|
| BatchToSpace<T extends TType> |
BatchToSpace for 4-D tensors of type T. |
| BatchToSpaceNd<T extends TType> |
BatchToSpace for N-D tensors of type T. |
| BesselI0<T extends TNumber> |
|
| BesselI0e<T extends TNumber> |
|
| BesselI1<T extends TNumber> |
|
| BesselI1e<T extends TNumber> |
|
| BesselJ0<T extends TNumber> |
|
| BesselJ1<T extends TNumber> |
|
| BesselK0<T extends TNumber> |
|
| BesselK0e<T extends TNumber> |
|
| BesselK1<T extends TNumber> |
|
| BesselK1e<T extends TNumber> |
|
| BesselY0<T extends TNumber> |
|
| BesselY1<T extends TNumber> |
|
| Betainc<T extends TNumber> |
Compute the regularized incomplete beta integral \\(I_x(a, b)\\). |
| BiasAdd<T extends TType> |
Adds `bias` to `value`. |
| BiasAddGrad<T extends TType> |
The backward operation for "BiasAdd" on the "bias" tensor. |
| Bincount<T extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
| Bitcast<U extends TType> |
Bitcasts a tensor from one type to another without copying data. |
| BitwiseAnd<T extends TNumber> |
Elementwise computes the bitwise AND of `x` and `y`. |
| BitwiseOr<T extends TNumber> |
Elementwise computes the bitwise OR of `x` and `y`. |
| BitwiseXor<T extends TNumber> |
Elementwise computes the bitwise XOR of `x` and `y`. |
| BlockLSTM<T extends TNumber> |
Computes the LSTM cell forward propagation for all the time steps. |
| BlockLSTMGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for the entire time sequence. |
| BoostedTreesAggregateStats |
Aggregates the summary of accumulated stats for the batch. |
| BoostedTreesBucketize |
Bucketize each feature based on bucket boundaries. |
| BoostedTreesCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesCalculateBestFeatureSplitV2 |
Calculates gains for each feature and returns the best possible split information for each node. |
| BoostedTreesCalculateBestGainsPerFeature |
Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesCenterBias |
Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. |
| BoostedTreesCreateEnsemble |
Creates a tree ensemble model and returns a handle to it. |
| BoostedTreesCreateQuantileStreamResource |
Create the Resource for Quantile Streams. |
| BoostedTreesDeserializeEnsemble |
Deserializes a serialized tree ensemble config and replaces current tree
ensemble. |
| BoostedTreesEnsembleResourceHandleOp |
Creates a handle to a BoostedTreesEnsembleResource
|
| BoostedTreesExampleDebugOutputs |
Debugging/model interpretability outputs for each example. |
| BoostedTreesFlushQuantileSummaries |
Flush the quantile summaries from each quantile stream resource. |
| BoostedTreesGetEnsembleStates |
Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. |
| BoostedTreesMakeQuantileSummaries |
Makes the summary of quantiles for the batch. |
| BoostedTreesMakeStatsSummary |
Makes the summary of accumulated stats for the batch. |
| BoostedTreesPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the logits. |
| BoostedTreesQuantileStreamResourceAddSummaries |
Add the quantile summaries to each quantile stream resource. |
| BoostedTreesQuantileStreamResourceDeserialize |
Deserialize bucket boundaries and ready flag into current QuantileAccumulator. |
| BoostedTreesQuantileStreamResourceFlush |
Flush the summaries for a quantile stream resource. |
| BoostedTreesQuantileStreamResourceGetBucketBoundaries |
Generate the bucket boundaries for each feature based on accumulated summaries. |
| BoostedTreesQuantileStreamResourceHandleOp |
Creates a handle to a BoostedTreesQuantileStreamResource. |
| BoostedTreesSerializeEnsemble |
Serializes the tree ensemble to a proto. |
| BoostedTreesSparseAggregateStats |
Aggregates the summary of accumulated stats for the batch. |
| BoostedTreesSparseCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesTrainingPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits. |
| BoostedTreesUpdateEnsemble |
Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree. |
| BoostedTreesUpdateEnsembleV2 |
Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree. |
| BroadcastDynamicShape<T extends TNumber> |
Return the shape of s0 op s1 with broadcast. |
| BroadcastGradientArgs<T extends TNumber> |
Return the reduction indices for computing gradients of s0 op s1 with broadcast. |
| BroadcastHelper<T extends TType> |
Helper operator for performing XLA-style broadcasts
Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to
whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules
for binary operators. |
| BroadcastRecv<T extends TType> |
Receives a tensor value broadcast from another device. |
| BroadcastSend<T extends TType> |
Broadcasts a tensor value to one or more other devices. |
| BroadcastTo<T extends TType> |
Broadcast an array for a compatible shape. |
| Bucketize |
Bucketizes 'input' based on 'boundaries'. |
| BytesProducedStatsDataset |
Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
| CSRSparseMatrixComponents<T extends TType> |
Reads out the CSR components at batch `index`. |
| CSRSparseMatrixToDense<T extends TType> |
Convert a (possibly batched) CSRSparseMatrix to dense. |
| CSRSparseMatrixToSparseTensor<T extends TType> |
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. |
| CSVDataset |
|
| CSVDatasetV2 |
|
| CTCLossV2 |
Calculates the CTC Loss (log probability) for each batch entry. |
| CacheDataset |
Creates a dataset that caches elements from `input_dataset`. |
| CacheDatasetV2 |
|
| Cast<U extends TType> |
Cast x of type SrcT to y of DstT. |
| Ceil<T extends TNumber> |
Returns element-wise smallest integer not less than x. |
| CheckNumerics<T extends TNumber> |
Checks a tensor for NaN, -Inf and +Inf values. |
| Cholesky<T extends TType> |
Computes the Cholesky decomposition of one or more square matrices. |
| CholeskyGrad<T extends TNumber> |
Computes the reverse mode backpropagated gradient of the Cholesky algorithm. |
| ChooseFastestDataset |
|
| ClipByValue<T extends TType> |
Clips tensor values to a specified min and max. |
| CloseSummaryWriter |
|
| ClusterOutput<T extends TType> |
Operator that connects the output of an XLA computation to other consumer graph nodes. |
| CollectiveGather<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape. |
| CollectivePermute<T extends TType> |
An Op to permute tensors across replicated TPU instances. |
| CombinedNonMaxSuppression |
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes. |
| CompareAndBitpack |
Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. |
| CompilationResult |
Returns the result of a TPU compilation. |
| CompileSucceededAssert |
Asserts that compilation succeeded. |
| Complex<U extends TType> |
Converts two real numbers to a complex number. |
| ComplexAbs<U extends TNumber> |
Computes the complex absolute value of a tensor. |
| CompressElement |
Compresses a dataset element. |
| ComputeAccidentalHits |
Computes the ids of the positions in sampled_candidates that match true_labels. |
| ComputeBatchSize |
Computes the static batch size of a dataset sans partial batches. |
| Concat<T extends TType> |
Concatenates tensors along one dimension. |
| ConcatenateDataset |
Creates a dataset that concatenates `input_dataset` with `another_dataset`. |
| ConditionalAccumulator |
A conditional accumulator for aggregating gradients. |
| ConfigureDistributedTPU |
Sets up the centralized structures for a distributed TPU system. |
| ConfigureTPUEmbedding |
Sets up TPUEmbedding in a distributed TPU system. |
| Conj<T extends TType> |
Returns the complex conjugate of a complex number. |
| ConjugateTranspose<T extends TType> |
Shuffle dimensions of x according to a permutation and conjugate the result. |
| Constant<T extends TType> |
An operator producing a constant value. |
| ConsumeMutexLock |
This op consumes a lock created by `MutexLock`. |
| ControlTrigger |
Does nothing. |
| Conv<T extends TType> |
Wraps the XLA ConvGeneralDilated operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
. |
| Conv2d<T extends TNumber> |
Computes a 2-D convolution given 4-D `input` and `filter` tensors. |
| Conv2dBackpropFilter<T extends TNumber> |
Computes the gradients of convolution with respect to the filter. |
| Conv2dBackpropInput<T extends TNumber> |
Computes the gradients of convolution with respect to the input. |
| Conv3d<T extends TNumber> |
Computes a 3-D convolution given 5-D `input` and `filter` tensors. |
| Conv3dBackpropFilter<T extends TNumber> |
Computes the gradients of 3-D convolution with respect to the filter. |
| Conv3dBackpropInput<U extends TNumber> |
Computes the gradients of 3-D convolution with respect to the input. |
| Copy<T extends TType> |
Copy a tensor from CPU-to-CPU or GPU-to-GPU. |
| CopyHost<T extends TType> |
Copy a tensor to host. |
| Cos<T extends TType> |
Computes cos of x element-wise. |
| Cosh<T extends TType> |
Computes hyperbolic cosine of x element-wise. |
| CountUpTo<T extends TNumber> |
Increments 'ref' until it reaches 'limit'. |
| CreateSummaryDbWriter |
|
| CreateSummaryFileWriter |
|
| CropAndResize |
Extracts crops from the input image tensor and resizes them. |
| CropAndResizeGradBoxes |
Computes the gradient of the crop_and_resize op wrt the input boxes tensor. |
| CropAndResizeGradImage<T extends TNumber> |
Computes the gradient of the crop_and_resize op wrt the input image tensor. |
| Cross<T extends TNumber> |
Compute the pairwise cross product. |
| CrossReplicaSum<T extends TNumber> |
An Op to sum inputs across replicated TPU instances. |
| CtcBeamSearchDecoder<T extends TNumber> |
Performs beam search decoding on the logits given in input. |
| CtcGreedyDecoder<T extends TNumber> |
Performs greedy decoding on the logits given in inputs. |
| CtcLoss<T extends TNumber> |
Calculates the CTC Loss (log probability) for each batch entry. |
| CudnnRNN<T extends TNumber> |
A RNN backed by cuDNN. |
| CudnnRNNBackprop<T extends TNumber> |
Backprop step of CudnnRNNV3. |
| CudnnRNNCanonicalToParams<T extends TNumber> |
Converts CudnnRNN params from canonical form to usable form. |
| CudnnRNNParamsToCanonical<T extends TNumber> |
Retrieves CudnnRNN params in canonical form. |
| CudnnRnnParamsSize<U extends TNumber> |
Computes size of weights that can be used by a Cudnn RNN model. |
| Cumprod<T extends TType> |
Compute the cumulative product of the tensor `x` along `axis`. |
| Cumsum<T extends TType> |
Compute the cumulative sum of the tensor `x` along `axis`. |
| CumulativeLogsumexp<T extends TNumber> |
Compute the cumulative product of the tensor `x` along `axis`. |
| DataFormatDimMap<T extends TNumber> |
Returns the dimension index in the destination data format given the one in
the source data format. |
| DataFormatVecPermute<T extends TNumber> |
Permute input tensor from `src_format` to `dst_format`. |
| DataServiceDataset |
|
| DatasetCardinality |
Returns the cardinality of `input_dataset`. |
| DatasetFromGraph |
Creates a dataset from the given `graph_def`. |
| DatasetToGraph |
Returns a serialized GraphDef representing `input_dataset`. |
| DatasetToSingleElement |
Outputs the single element from the given dataset. |
| DatasetToTFRecord |
Writes the given dataset to the given file using the TFRecord format. |
| DatasetToTfRecord |
Writes the given dataset to the given file using the TFRecord format. |
| Dawsn<T extends TNumber> |
|
| DebugGradientIdentity<T extends TType> |
Identity op for gradient debugging. |
| DebugGradientRefIdentity<T extends TType> |
Identity op for gradient debugging. |
| DebugIdentity<T extends TType> |
Debug Identity V2 Op. |
| DebugNanCount |
Debug NaN Value Counter Op. |
| DebugNumericsSummary<U extends TNumber> |
Debug Numeric Summary V2 Op. |
| DecodeAndCropJpeg |
Decode and Crop a JPEG-encoded image to a uint8 tensor. |
| DecodeBase64 |
Decode web-safe base64-encoded strings. |
| DecodeBmp |
Decode the first frame of a BMP-encoded image to a uint8 tensor. |
| DecodeCompressed |
Decompress strings. |
| DecodeCsv |
Convert CSV records to tensors. |
| DecodeGif |
Decode the frame(s) of a GIF-encoded image to a uint8 tensor. |
| DecodeImage<T extends TNumber> |
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. |
| DecodeJpeg |
Decode a JPEG-encoded image to a uint8 tensor. |
| DecodeJsonExample |
Convert JSON-encoded Example records to binary protocol buffer strings. |
| DecodePaddedRaw<T extends TNumber> |
Reinterpret the bytes of a string as a vector of numbers. |
| DecodePng<T extends TNumber> |
Decode a PNG-encoded image to a uint8 or uint16 tensor. |
| DecodeProto |
The op extracts fields from a serialized protocol buffers message into tensors. |
| DecodeRaw<T extends TType> |
Reinterpret the bytes of a string as a vector of numbers. |
| DecodeWav |
Decode a 16-bit PCM WAV file to a float tensor. |
| DeepCopy<T extends TType> |
Makes a copy of `x`. |
| DeleteIterator |
A container for an iterator resource. |
| DeleteMemoryCache |
|
| DeleteMultiDeviceIterator |
A container for an iterator resource. |
| DeleteRandomSeedGenerator |
|
| DeleteSeedGenerator |
|
| DeleteSessionTensor |
Delete the tensor specified by its handle in the session. |
| DenseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
| DenseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a tf.tensor input. |
| DenseToCSRSparseMatrix |
Converts a dense tensor to a (possibly batched) CSRSparseMatrix. |
| DenseToDenseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 `Tensor` inputs. |
| DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor. |
| DenseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of `Tensor` and `SparseTensor`. |
| DepthToSpace<T extends TType> |
DepthToSpace for tensors of type T. |
| DepthwiseConv2dNative<T extends TNumber> |
Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. |
| DepthwiseConv2dNativeBackpropFilter<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the filter. |
| DepthwiseConv2dNativeBackpropInput<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the input. |
| Dequantize |
Takes the packed uint32 input and unpacks the input to uint8 to do
Dequantization on device. |
| DeserializeIterator |
Converts the given variant tensor to an iterator and stores it in the given resource. |
| DeserializeManySparse<T extends TType> |
Deserialize and concatenate `SparseTensors` from a serialized minibatch. |
| DeserializeSparse<U extends TType> |
Deserialize `SparseTensor` objects. |
| DestroyResourceOp |
Deletes the resource specified by the handle. |
| DestroyTemporaryVariable<T extends TType> |
Destroys the temporary variable and returns its final value. |
| Det<T extends TType> |
Computes the determinant of one or more square matrices. |
| DeviceIndex |
Return the index of device the op runs. |
| Digamma<T extends TNumber> |
Computes Psi, the derivative of Lgamma (the log of the absolute value of
`Gamma(x)`), element-wise. |
| Dilation2d<T extends TNumber> |
Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. |
| Dilation2dBackpropFilter<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the filter. |
| Dilation2dBackpropInput<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the input. |
| DirectedInterleaveDataset |
A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
| Div<T extends TType> |
Returns x / y element-wise. |
| DivNoNan<T extends TType> |
Returns 0 if the denominator is zero. |
| Dot<T extends TType> |
Wraps the XLA DotGeneral operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
. |
| DrawBoundingBoxes<T extends TNumber> |
Draw bounding boxes on a batch of images. |
| DummyIterationCounter |
|
| DummyMemoryCache |
|
| DummySeedGenerator |
|
| DynamicPartition<T extends TType> |
Partitions `data` into `num_partitions` tensors using indices from `partitions`. |
| DynamicSlice<T extends TType> |
Wraps the XLA DynamicSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice
. |
| DynamicStitch<T extends TType> |
Interleave the values from the `data` tensors into a single tensor. |
| DynamicUpdateSlice<T extends TType> |
Wraps the XLA DynamicUpdateSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice
. |
| EditDistance |
Computes the (possibly normalized) Levenshtein Edit Distance. |
| Eig<U extends TType> |
Computes the eigen decomposition of one or more square matrices. |
| Einsum<T extends TType> |
An op which supports basic einsum op with 2 inputs and 1 output. |
| Elu<T extends TNumber> |
Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. |
| EluGrad<T extends TNumber> |
Computes gradients for the exponential linear (Elu) operation. |
| EmbeddingActivations |
An op enabling differentiation of TPU Embeddings. |
| Empty<T extends TType> |
Creates a tensor with the given shape. |
| EmptyTensorList |
Creates and returns an empty tensor list. |
| EmptyTensorMap |
Creates and returns an empty tensor map. |
| EncodeBase64 |
Encode strings into web-safe base64 format. |
| EncodeJpeg |
JPEG-encode an image. |
| EncodeJpegVariableQuality |
JPEG encode input image with provided compression quality. |
| EncodePng |
PNG-encode an image. |
| EncodeProto |
The op serializes protobuf messages provided in the input tensors. |
| EncodeWav |
Encode audio data using the WAV file format. |
| EnqueueTPUEmbeddingIntegerBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding. |
| EnqueueTPUEmbeddingRaggedTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup(). |
| EnqueueTPUEmbeddingSparseBatch |
An op that enqueues TPUEmbedding input indices from a SparseTensor. |
| EnqueueTPUEmbeddingSparseTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). |
| EnsureShape<T extends TType> |
Ensures that the tensor's shape matches the expected shape. |
| Enter<T extends TType> |
Creates or finds a child frame, and makes `data` available to the child frame. |
| Equal |
Returns the truth value of (x == y) element-wise. |
| Erf<T extends TNumber> |
Computes the Gauss error function of `x` element-wise. |
| Erfc<T extends TNumber> |
Computes the complementary error function of `x` element-wise. |
| EuclideanNorm<T extends TType> |
Computes the euclidean norm of elements across dimensions of a tensor. |
| Execute |
Op that loads and executes a TPU program on a TPU device. |
| ExecuteAndUpdateVariables |
Op that executes a program with optional in-place variable updates. |
| Exit<T extends TType> |
Exits the current frame to its parent frame. |
| Exp<T extends TType> |
Computes exponential of x element-wise. |
| ExpandDims<T extends TType> |
Inserts a dimension of 1 into a tensor's shape. |
| Expint<T extends TNumber> |
|
| Expm1<T extends TType> |
Computes `exp(x) - 1` element-wise. |
| ExtractGlimpse |
Extracts a glimpse from the input tensor. |
| ExtractImagePatches<T extends TType> |
Extract `patches` from `images` and put them in the "depth" output dimension. |
| ExtractJpegShape<T extends TNumber> |
Extract the shape information of a JPEG-encoded image. |
| ExtractVolumePatches<T extends TNumber> |
Extract `patches` from `input` and put them in the `"depth"` output dimension. |
| Fact |
Output a fact about factorials. |
| FakeQuantWithMinMaxArgs |
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. |
| FakeQuantWithMinMaxArgsGradient |
Compute gradients for a FakeQuantWithMinMaxArgs operation. |
| FakeQuantWithMinMaxVars |
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the `inputs` tensor of type float via global float scalars
`min` and `max` to `outputs` tensor of same shape as `inputs`. |
| FakeQuantWithMinMaxVarsGradient |
Compute gradients for a FakeQuantWithMinMaxVars operation. |
| FakeQuantWithMinMaxVarsPerChannel |
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the `inputs` tensor of type float per-channel and one of the
shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max`
of shape `[d]` to `outputs` tensor of same shape as `inputs`. |
| FakeQuantWithMinMaxVarsPerChannelGradient |
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. |
| Fft<T extends TType> |
Fast Fourier transform. |
| Fft2d<T extends TType> |
2D fast Fourier transform. |
| Fft3d<T extends TType> |
3D fast Fourier transform. |
| FifoQueue |
A queue that produces elements in first-in first-out order. |
| Fill<U extends TType> |
Creates a tensor filled with a scalar value. |
| FilterByLastComponentDataset |
Creates a dataset containing elements of first component of `input_dataset` having true in the last component. |
| Fingerprint |
Generates fingerprint values. |
| FixedLengthRecordDataset |
|
| FixedLengthRecordReader |
A Reader that outputs fixed-length records from a file. |
| FixedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
| Floor<T extends TNumber> |
Returns element-wise largest integer not greater than x. |
| FloorDiv<T extends TType> |
Returns x // y element-wise. |
| FloorMod<T extends TNumber> |
Returns element-wise remainder of division. |
| FlushSummaryWriter |
|
| FractionalAvgPool<T extends TNumber> |
Performs fractional average pooling on the input. |
| FractionalAvgPoolGrad<T extends TNumber> |
Computes gradient of the FractionalAvgPool function. |
| FractionalMaxPool<T extends TNumber> |
Performs fractional max pooling on the input. |
| FractionalMaxPoolGrad<T extends TNumber> |
Computes gradient of the FractionalMaxPool function. |
| FresnelCos<T extends TNumber> |
|
| FresnelSin<T extends TNumber> |
|
| FusedBatchNorm<T extends TNumber, U extends TNumber> |
Batch normalization. |
| FusedBatchNormGrad<T extends TNumber, U extends TNumber> |
Gradient for batch normalization. |
| FusedPadConv2d<T extends TNumber> |
Performs a padding as a preprocess during a convolution. |
| FusedResizeAndPadConv2d<T extends TNumber> |
Performs a resize and padding as a preprocess during a convolution. |
| GRUBlockCell<T extends TNumber> |
Computes the GRU cell forward propagation for 1 time step. |
| GRUBlockCellGrad<T extends TNumber> |
Computes the GRU cell back-propagation for 1 time step. |
| Gather<T extends TType> |
Wraps the XLA Gather operator documented at
https://www.tensorflow.org/xla/operation_semantics#gather |
| GatherNd<T extends TType> |
Gather slices from `params` into a Tensor with shape specified by `indices`. |
| GatherV2<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape. |
| GenerateBoundingBoxProposals |
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors,
applies non-maximal suppression on overlapping boxes with higher than
`nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter
side is less than `min_size`. |
| GenerateVocabRemapping |
Given a path to new and old vocabulary files, returns a remapping Tensor of
length `num_new_vocab`, where `remapping[i]` contains the row number in the old
vocabulary that corresponds to row `i` in the new vocabulary (starting at line
`new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i`
in the new vocabulary is not in the old vocabulary. |
| GetSessionHandle |
Store the input tensor in the state of the current session. |
| GetSessionTensor<T extends TType> |
Get the value of the tensor specified by its handle. |
| Greater |
Returns the truth value of (x > y) element-wise. |
| GreaterEqual |
Returns the truth value of (x >= y) element-wise. |
| GuaranteeConst<T extends TType> |
Gives a guarantee to the TF runtime that the input tensor is a constant. |
| HashTable |
Creates a non-initialized hash table. |
| HistogramFixedWidth<U extends TNumber> |
Return histogram of values. |
| HistogramSummary |
Outputs a `Summary` protocol buffer with a histogram. |
| HsvToRgb<T extends TNumber> |
Convert one or more images from HSV to RGB. |
| Identity<T extends TType> |
Return a tensor with the same shape and contents as the input tensor or value. |
| IdentityN |
Returns a list of tensors with the same shapes and contents as the input
tensors. |
| IdentityReader |
A Reader that outputs the queued work as both the key and value. |
| Ifft<T extends TType> |
Inverse fast Fourier transform. |
| Ifft2d<T extends TType> |
Inverse 2D fast Fourier transform. |
| Ifft3d<T extends TType> |
Inverse 3D fast Fourier transform. |
| Igamma<T extends TNumber> |
Compute the lower regularized incomplete Gamma function `P(a, x)`. |
| IgammaGradA<T extends TNumber> |
Computes the gradient of `igamma(a, x)` wrt `a`. |
| Igammac<T extends TNumber> |
Compute the upper regularized incomplete Gamma function `Q(a, x)`. |
| IgnoreErrorsDataset |
Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
| Imag<U extends TNumber> |
Returns the imaginary part of a complex number. |
| ImageProjectiveTransformV2<T extends TNumber> |
Applies the given transform to each of the images. |
| ImageProjectiveTransformV3<T extends TNumber> |
Applies the given transform to each of the images. |
| ImageSummary |
Outputs a `Summary` protocol buffer with images. |
| ImmutableConst<T extends TType> |
Returns immutable tensor from memory region. |
| ImportEvent |
|
| InTopK |
Says whether the targets are in the top `K` predictions. |
| InfeedDequeue<T extends TType> |
A placeholder op for a value that will be fed into the computation. |
| InfeedDequeueTuple |
Fetches multiple values from infeed as an XLA tuple. |
| InfeedEnqueue |
An op which feeds a single Tensor value into the computation. |
| InfeedEnqueuePrelinearizedBuffer |
An op which enqueues prelinearized buffer into TPU infeed. |
| InfeedEnqueueTuple |
Feeds multiple Tensor values into the computation as an XLA tuple. |
| Init |
|
| InitializeTable |
Table initializer that takes two tensors for keys and values respectively. |
| InitializeTableFromDataset |
|
| InitializeTableFromTextFile |
Initializes a table from a text file. |
| InplaceAdd<T extends TType> |
Adds v into specified rows of x. |
| InplaceSub<T extends TType> |
Subtracts `v` into specified rows of `x`. |
| InplaceUpdate<T extends TType> |
Updates specified rows 'i' with values 'v'. |
| Inv<T extends TType> |
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). |
| InvGrad<T extends TType> |
Computes the gradient for the inverse of `x` wrt its input. |
| Invert<T extends TNumber> |
Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. |
| InvertPermutation<T extends TNumber> |
Computes the inverse permutation of a tensor. |
| Irfft<U extends TNumber> |
Inverse real-valued fast Fourier transform. |
| Irfft2d<U extends TNumber> |
Inverse 2D real-valued fast Fourier transform. |
| Irfft3d<U extends TNumber> |
Inverse 3D real-valued fast Fourier transform. |
| IsBoostedTreesEnsembleInitialized |
Checks whether a tree ensemble has been initialized. |
| IsBoostedTreesQuantileStreamResourceInitialized |
Checks whether a quantile stream has been initialized. |
| IsFinite |
Returns which elements of x are finite. |
| IsInf |
Returns which elements of x are Inf. |
| IsNan |
Returns which elements of x are NaN. |
| IsVariableInitialized |
Checks whether a tensor has been initialized. |
| IsotonicRegression<U extends TNumber> |
Solves a batch of isotonic regression problems. |
| Iterator |
|
| IteratorFromStringHandle |
|
| IteratorGetDevice |
Returns the name of the device on which `resource` has been placed. |
| IteratorGetNext |
Gets the next output from the given iterator . |
| IteratorGetNextAsOptional |
Gets the next output from the given iterator as an Optional variant. |
| IteratorGetNextSync |
Gets the next output from the given iterator. |
| IteratorToStringHandle |
Converts the given `resource_handle` representing an iterator to a string. |
| Join |
Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator). |
| KMC2ChainInitialization |
Returns the index of a data point that should be added to the seed set. |
| KeyValueSort<T extends TNumber, U extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
. |
| KmeansPlusPlusInitialization |
Selects num_to_sample rows of input using the KMeans++ criterion. |
| KthOrderStatistic |
Computes the Kth order statistic of a data set. |
| L2Loss<T extends TNumber> |
L2 Loss. |
| LMDBDataset |
Creates a dataset that emits the key-value pairs in one or more LMDB files. |
| LSTMBlockCell<T extends TNumber> |
Computes the LSTM cell forward propagation for 1 time step. |
| LSTMBlockCellGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for 1 timestep. |
| LatencyStatsDataset |
Records the latency of producing `input_dataset` elements in a StatsAggregator. |
| LeakyRelu<T extends TNumber> |
Computes rectified linear: `max(features, features * alpha)`. |
| LeakyReluGrad<T extends TNumber> |
Computes rectified linear gradients for a LeakyRelu operation. |
| LearnedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
| LeftShift<T extends TNumber> |
Elementwise computes the bitwise left-shift of `x` and `y`. |
| Less |
Returns the truth value of (x < y) element-wise. |
| LessEqual |
Returns the truth value of (x <= y) element-wise. |
| Lgamma<T extends TNumber> |
Computes the log of the absolute value of `Gamma(x)` element-wise. |
| LinSpace<T extends TNumber> |
Generates values in an interval. |
| LmdbDataset |
|
| LmdbReader |
A Reader that outputs the records from a LMDB file. |
| LoadAndRemapMatrix |
Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint
at `ckpt_path` and potentially reorders its rows and columns using the
specified remappings. |
| LoadTPUEmbeddingADAMParameters |
Load ADAM embedding parameters. |
| LoadTPUEmbeddingADAMParametersGradAccumDebug |
Load ADAM embedding parameters with debug support. |
| LoadTPUEmbeddingAdadeltaParameters |
Load Adadelta embedding parameters. |
| LoadTPUEmbeddingAdadeltaParametersGradAccumDebug |
Load Adadelta parameters with debug support. |
| LoadTPUEmbeddingAdagradParameters |
Load Adagrad embedding parameters. |
| LoadTPUEmbeddingAdagradParametersGradAccumDebug |
Load Adagrad embedding parameters with debug support. |
| LoadTPUEmbeddingCenteredRMSPropParameters |
Load centered RMSProp embedding parameters. |
| LoadTPUEmbeddingFTRLParameters |
Load FTRL embedding parameters. |
| LoadTPUEmbeddingFTRLParametersGradAccumDebug |
Load FTRL embedding parameters with debug support. |
| LoadTPUEmbeddingMDLAdagradLightParameters |
Load MDL Adagrad Light embedding parameters. |
| LoadTPUEmbeddingMomentumParameters |
Load Momentum embedding parameters. |
| LoadTPUEmbeddingMomentumParametersGradAccumDebug |
Load Momentum embedding parameters with debug support. |
| LoadTPUEmbeddingProximalAdagradParameters |
Load proximal Adagrad embedding parameters. |
| LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug |
Load proximal Adagrad embedding parameters with debug support. |
| LoadTPUEmbeddingProximalYogiParameters |
|
| LoadTPUEmbeddingProximalYogiParametersGradAccumDebug |
|
| LoadTPUEmbeddingRMSPropParameters |
Load RMSProp embedding parameters. |
| LoadTPUEmbeddingRMSPropParametersGradAccumDebug |
Load RMSProp embedding parameters with debug support. |
| LoadTPUEmbeddingStochasticGradientDescentParameters |
Load SGD embedding parameters. |
| LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |
Load SGD embedding parameters. |
| LocalResponseNormalization<T extends TNumber> |
Local Response Normalization. |
| LocalResponseNormalizationGrad<T extends TNumber> |
Gradients for Local Response Normalization. |
| Log<T extends TType> |
Computes natural logarithm of x element-wise. |
| Log1p<T extends TType> |
Computes natural logarithm of (1 + x) element-wise. |
| LogMatrixDeterminant<T extends TType> |
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices. |
| LogSoftmax<T extends TNumber> |
Computes log softmax activations. |
| LogUniformCandidateSampler |
Generates labels for candidate sampling with a log-uniform distribution. |
| LogicalAnd |
Returns the truth value of x AND y element-wise. |
| LogicalNot |
Returns the truth value of `NOT x` element-wise. |
| LogicalOr |
Returns the truth value of x OR y element-wise. |
| LookupTableExport<T extends TType, U extends TType> |
Outputs all keys and values in the table. |
| LookupTableFind<U extends TType> |
Looks up keys in a table, outputs the corresponding values. |
| LookupTableImport |
Replaces the contents of the table with the specified keys and values. |
| LookupTableInsert |
Updates the table to associates keys with values. |
| LookupTableRemove |
Removes keys and its associated values from a table. |
| LookupTableSize |
Computes the number of elements in the given table. |
| LoopCond |
Forwards the input to the output. |
| Lower |
Converts all uppercase characters into their respective lowercase replacements. |
| LowerBound<U extends TNumber> |
Applies lower_bound(sorted_search_values, values) along each row. |
| Lu<T extends TType, U extends TNumber> |
Computes the LU decomposition of one or more square matrices. |
| MakeIterator |
Makes a new iterator from the given `dataset` and stores it in `iterator`. |
| MakeUnique |
Make all elements in the non-Batch dimension unique, but \"close\" to
their initial value. |
| MapClear |
Op removes all elements in the underlying container. |
| MapIncompleteSize |
Op returns the number of incomplete elements in the underlying container. |
| MapPeek |
Op peeks at the values at the specified key. |
| MapSize |
Op returns the number of elements in the underlying container. |
| MapStage |
Stage (key, values) in the underlying container which behaves like a hashtable. |
| MapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
| MapUnstageNoKey |
Op removes and returns a random (key, value)
from the underlying container. |
| MatMul<T extends TType> |
Multiply the matrix "a" by the matrix "b". |
| MatchingFiles |
Returns the set of files matching one or more glob patterns. |
| MatchingFilesDataset |
|
| MatrixDiag<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values. |
| MatrixDiagPart<T extends TType> |
Returns the batched diagonal part of a batched tensor. |
| MatrixDiagPartV3<T extends TType> |
Returns the batched diagonal part of a batched tensor. |
| MatrixDiagV3<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values. |
| MatrixLogarithm<T extends TType> |
Computes the matrix logarithm of one or more square matrices:
\\(log(exp(A)) = A\\)
This op is only defined for complex matrices. |
| MatrixSetDiag<T extends TType> |
Returns a batched matrix tensor with new batched diagonal values. |
| MatrixSolveLs<T extends TType> |
Solves one or more linear least-squares problems. |
| Max<T extends TType> |
Computes the maximum of elements across dimensions of a tensor. |
| MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism. |
| MaxPool<T extends TType> |
Performs max pooling on the input. |
| MaxPool3d<T extends TNumber> |
Performs 3D max pooling on the input. |
| MaxPool3dGrad<U extends TNumber> |
Computes gradients of 3D max pooling function. |
| MaxPool3dGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
| MaxPoolGrad<T extends TNumber> |
Computes gradients of the maxpooling function. |
| MaxPoolGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
| MaxPoolGradGradWithArgmax<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
| MaxPoolGradWithArgmax<T extends TNumber> |
Computes gradients of the maxpooling function. |
| MaxPoolWithArgmax<T extends TNumber, U extends TNumber> |
Performs max pooling on the input and outputs both max values and indices. |
| Maximum<T extends TNumber> |
Returns the max of x and y (i.e. |
| Mean<T extends TType> |
Computes the mean of elements across dimensions of a tensor. |
| Merge<T extends TType> |
Forwards the value of an available tensor from `inputs` to `output`. |
| MergeSummary |
Merges summaries. |
| MergeV2Checkpoints |
V2 format specific: merges the metadata files of sharded checkpoints. |
| Mfcc |
Transforms a spectrogram into a form that's useful for speech recognition. |
| Min<T extends TType> |
Computes the minimum of elements across dimensions of a tensor. |
| Minimum<T extends TNumber> |
Returns the min of x and y (i.e. |
| MirrorPad<T extends TType> |
Pads a tensor with mirrored values. |
| MirrorPadGrad<T extends TType> |
Gradient op for `MirrorPad` op. |
| MlirPassthroughOp |
Wraps an arbitrary MLIR computation expressed as a module with a main() function. |
| Mod<T extends TNumber> |
Returns element-wise remainder of division. |
| ModelDataset |
Identity transformation that models performance. |
| Mul<T extends TType> |
Returns x * y element-wise. |
| MulNoNan<T extends TType> |
Returns x * y element-wise. |
| MultiDeviceIterator |
Creates a MultiDeviceIterator resource. |
| MultiDeviceIteratorFromStringHandle |
Generates a MultiDeviceIterator resource from its provided string handle. |
| MultiDeviceIteratorGetNextFromShard |
Gets next element for the provided shard number. |
| MultiDeviceIteratorInit |
Initializes the multi device iterator with the given dataset. |
| MultiDeviceIteratorToStringHandle |
Produces a string handle for the given MultiDeviceIterator. |
| Multinomial<U extends TNumber> |
Draws samples from a multinomial distribution. |
| MutableDenseHashTable |
Creates an empty hash table that uses tensors as the backing store. |
| MutableHashTable |
Creates an empty hash table. |
| MutableHashTableOfTensors |
Creates an empty hash table. |
| Mutex |
Creates a Mutex resource that can be locked by `MutexLock`. |
| MutexLock |
Locks a mutex resource. |
| NcclAllReduce<T extends TNumber> |
Outputs a tensor containing the reduction across all input tensors. |
| NcclBroadcast<T extends TNumber> |
Sends `input` to all devices that are connected to the output. |
| NcclReduce<T extends TNumber> |
Reduces `input` from `num_devices` using `reduction` to a single device. |
| Ndtri<T extends TNumber> |
|
| NearestNeighbors |
Selects the k nearest centers for each point. |
| Neg<T extends TType> |
Computes numerical negative value element-wise. |
| NegTrain |
Training via negative sampling. |
| NextAfter<T extends TNumber> |
Returns the next representable value of `x1` in the direction of `x2`, element-wise. |
| NextIteration<T extends TType> |
Makes its input available to the next iteration. |
| NoOp |
Does nothing. |
| NonDeterministicInts<U extends TType> |
Non-deterministically generates some integers. |
| NonMaxSuppression<T extends TNumber> |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes. |
| NonMaxSuppressionWithOverlaps |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes. |
| NonSerializableDataset |
|
| NotEqual |
Returns the truth value of (x != y) element-wise. |
| NthElement<T extends TNumber> |
Finds values of the `n`-th order statistic for the last dimension. |
| OneHot<U extends TType> |
Returns a one-hot tensor. |
| OnesLike<T extends TType> |
Returns a tensor of ones with the same shape and type as x. |
| OptimizeDataset |
Creates a dataset by applying optimizations to `input_dataset`. |
| OptimizeDatasetV2 |
Creates a dataset by applying related optimizations to `input_dataset`. |
| OptionalFromValue |
Constructs an Optional variant from a tuple of tensors. |
| OptionalGetValue |
Returns the value stored in an Optional variant or raises an error if none exists. |
| OptionalHasValue |
Returns true if and only if the given Optional variant has a value. |
| OptionalNone |
Creates an Optional variant with no value. |
| OrderedMapClear |
Op removes all elements in the underlying container. |
| OrderedMapIncompleteSize |
Op returns the number of incomplete elements in the underlying container. |
| OrderedMapPeek |
Op peeks at the values at the specified key. |
| OrderedMapSize |
Op returns the number of elements in the underlying container. |
| OrderedMapStage |
Stage (key, values) in the underlying container which behaves like a ordered
associative container. |
| OrderedMapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
| OrderedMapUnstageNoKey |
Op removes and returns the (key, value) element with the smallest
key from the underlying container. |
| OrdinalSelector |
A TPU core selector Op. |
| OutfeedDequeue<T extends TType> |
Retrieves a single tensor from the computation outfeed. |
| OutfeedDequeueTuple |
Retrieve multiple values from the computation outfeed. |
| OutfeedDequeueTupleV2 |
Retrieve multiple values from the computation outfeed. |
| OutfeedDequeueV2<T extends TType> |
Retrieves a single tensor from the computation outfeed. |
| OutfeedEnqueue |
Enqueue a Tensor on the computation outfeed. |
| OutfeedEnqueueTuple |
Enqueue multiple Tensor values on the computation outfeed. |
| Pad<T extends TType> |
Wraps the XLA Pad operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#pad
. |
| PaddedBatchDataset |
Creates a dataset that batches and pads `batch_size` elements from the input. |
| PaddingFifoQueue |
A queue that produces elements in first-in first-out order. |
| ParallelConcat<T extends TType> |
Concatenates a list of `N` tensors along the first dimension. |
| ParallelDynamicStitch<T extends TType> |
Interleave the values from the `data` tensors into a single tensor. |
| ParameterizedTruncatedNormal<U extends TNumber> |
Outputs random values from a normal distribution. |
| ParseExample |
Transforms a vector of tf.Example protos (as strings) into typed tensors. |
| ParseExampleDataset |
Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
| ParseSequenceExample |
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors. |
| ParseSingleExample |
Transforms a tf.Example proto (as a string) into typed tensors. |
| ParseSingleSequenceExample |
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. |
| ParseTensor<T extends TType> |
Transforms a serialized tensorflow.TensorProto proto into a Tensor. |
| PartitionedInput<T extends TType> |
An op that groups a list of partitioned inputs together. |
| PartitionedOutput<T extends TType> |
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation. |
| Placeholder<T extends TType> |
A placeholder op for a value that will be fed into the computation. |
| PlaceholderWithDefault<T extends TType> |
A placeholder op that passes through `input` when its output is not fed. |
| Polygamma<T extends TNumber> |
Compute the polygamma function \\(\psi^{(n)}(x)\\). |
| PopulationCount |
Computes element-wise population count (a.k.a. |
| Pow<T extends TType> |
Computes the power of one value to another. |
| PrefetchDataset |
Creates a dataset that asynchronously prefetches elements from `input_dataset`. |
| Prelinearize |
An op which linearizes one Tensor value to an opaque variant tensor. |
| PrelinearizeTuple |
An op which linearizes multiple Tensor values to an opaque variant tensor. |
| PreventGradient<T extends TType> |
An identity op that triggers an error if a gradient is requested. |
| Print |
Prints a string scalar. |
| PriorityQueue |
A queue that produces elements sorted by the first component value. |
| PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| Prod<T extends TType> |
Computes the product of elements across dimensions of a tensor. |
| Qr<T extends TType> |
Computes the QR decompositions of one or more matrices. |
| Quantize<T extends TType> |
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. |
| QuantizeAndDequantize<T extends TNumber> |
Quantizes then dequantizes a tensor. |
| QuantizeAndDequantizeV3<T extends TNumber> |
Quantizes then dequantizes a tensor. |
| QuantizeAndDequantizeV4<T extends TNumber> |
Returns the gradient of `quantization.QuantizeAndDequantizeV4`. |
| QuantizeAndDequantizeV4Grad<T extends TNumber> |
Returns the gradient of `QuantizeAndDequantizeV4`. |
| QuantizeDownAndShrinkRange<U extends TType> |
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly. |
| QuantizedAdd<V extends TType> |
Returns x + y element-wise, working on quantized buffers. |
| QuantizedAvgPool<T extends TType> |
Produces the average pool of the input tensor for quantized types. |
| QuantizedBatchNormWithGlobalNormalization<U extends TType> |
Quantized Batch normalization. |
| QuantizedBiasAdd<V extends TType> |
Adds Tensor 'bias' to Tensor 'input' for Quantized types. |
| QuantizedConcat<T extends TType> |
Concatenates quantized tensors along one dimension. |
| QuantizedConv2DAndRelu<V extends TType> |
|
| QuantizedConv2DAndReluAndRequantize<V extends TType> |
|
| QuantizedConv2DAndRequantize<V extends TType> |
|
| QuantizedConv2DPerChannel<V extends TType> |
Computes QuantizedConv2D per channel. |
| QuantizedConv2DWithBias<V extends TType> |
|
| QuantizedConv2DWithBiasAndRelu<V extends TType> |
|
| QuantizedConv2DWithBiasAndReluAndRequantize<W extends TType> |
|
| QuantizedConv2DWithBiasAndRequantize<W extends TType> |
|
| QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TType> |
|
| QuantizedConv2DWithBiasSumAndRelu<V extends TType> |
|
| QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TType> |
|
| QuantizedConv2d<V extends TType> |
Computes a 2D convolution given quantized 4D input and filter tensors. |
| QuantizedDepthwiseConv2D<V extends TType> |
Computes quantized depthwise Conv2D. |
| QuantizedDepthwiseConv2DWithBias<V extends TType> |
Computes quantized depthwise Conv2D with Bias. |
| QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TType> |
Computes quantized depthwise Conv2D with Bias and Relu. |
| QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TType> |
Computes quantized depthwise Conv2D with Bias, Relu and Requantize. |
| QuantizedInstanceNorm<T extends TType> |
Quantized Instance normalization. |
| QuantizedMatMul<V extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b`. |
| QuantizedMatMulWithBias<W extends TType> |
Performs a quantized matrix multiplication of `a` by the matrix `b` with bias
add. |
| QuantizedMatMulWithBiasAndDequantize<W extends TNumber> |
|
| QuantizedMatMulWithBiasAndRelu<V extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu fusion. |
| QuantizedMatMulWithBiasAndReluAndRequantize<W extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu and requantize fusion. |
| QuantizedMatMulWithBiasAndRequantize<W extends TType> |
|
| QuantizedMaxPool<T extends TType> |
Produces the max pool of the input tensor for quantized types. |
| QuantizedMul<V extends TType> |
Returns x * y element-wise, working on quantized buffers. |
| QuantizedRelu<U extends TType> |
Computes Quantized Rectified Linear: `max(features, 0)` |
| QuantizedRelu6<U extends TType> |
Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` |
| QuantizedReluX<U extends TType> |
Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` |
| QuantizedReshape<T extends TType> |
Reshapes a quantized tensor as per the Reshape op. |
| QuantizedResizeBilinear<T extends TType> |
Resize quantized `images` to `size` using quantized bilinear interpolation. |
| QueueClose |
Closes the given queue. |
| QueueDequeue |
Dequeues a tuple of one or more tensors from the given queue. |
| QueueDequeueMany |
Dequeues `n` tuples of one or more tensors from the given queue. |
| QueueDequeueUpTo |
Dequeues `n` tuples of one or more tensors from the given queue. |
| QueueEnqueue |
Enqueues a tuple of one or more tensors in the given queue. |
| QueueEnqueueMany |
Enqueues zero or more tuples of one or more tensors in the given queue. |
| QueueIsClosed |
Returns true if queue is closed. |
| QueueSize |
Computes the number of elements in the given queue. |
| RaggedBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
| RaggedCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a ragged tensor input. |
| RaggedCross<T extends TType, U extends TNumber> |
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor. |
| RaggedGather<T extends TNumber, U extends TType> |
Gather ragged slices from `params` axis `0` according to `indices`. |
| RaggedRange<U extends TNumber, T extends TNumber> |
Returns a `RaggedTensor` containing the specified sequences of numbers. |
| RaggedTensorFromVariant<U extends TNumber, T extends TType> |
Decodes a `variant` Tensor into a `RaggedTensor`. |
| RaggedTensorToSparse<U extends TType> |
Converts a `RaggedTensor` into a `SparseTensor` with the same values. |
| RaggedTensorToTensor<U extends TType> |
Create a dense tensor from a ragged tensor, possibly altering its shape. |
| RaggedTensorToVariant |
Encodes a `RaggedTensor` into a `variant` Tensor. |
| RaggedTensorToVariantGradient<U extends TType> |
Helper used to compute the gradient for `RaggedTensorToVariant`. |
| RandomCrop<T extends TNumber> |
Randomly crop `image`. |
| RandomDataset |
Creates a Dataset that returns pseudorandom numbers. |
| RandomGamma<U extends TNumber> |
Outputs random values from the Gamma distribution(s) described by alpha. |
| RandomGammaGrad<T extends TNumber> |
Computes the derivative of a Gamma random sample w.r.t. |
| RandomPoisson<V extends TNumber> |
Outputs random values from the Poisson distribution(s) described by rate. |
| RandomShuffle<T extends TType> |
Randomly shuffles a tensor along its first dimension. |
| RandomShuffleQueue |
A queue that randomizes the order of elements. |
| RandomStandardNormal<U extends TNumber> |
Outputs random values from a normal distribution. |
| RandomUniform<U extends TNumber> |
Outputs random values from a uniform distribution. |
| RandomUniformInt<U extends TNumber> |
Outputs random integers from a uniform distribution. |
| Range<T extends TNumber> |
Creates a sequence of numbers. |
| RangeDataset |
Creates a dataset with a range of values. |
| Rank |
Returns the rank of a tensor. |
| ReadFile |
Reads and outputs the entire contents of the input filename. |
| ReadVariableOp<T extends TType> |
Reads the value of a variable. |
| ReaderNumRecordsProduced |
Returns the number of records this Reader has produced. |
| ReaderNumWorkUnitsCompleted |
Returns the number of work units this Reader has finished processing. |
| ReaderRead |
Returns the next record (key, value pair) produced by a Reader. |
| ReaderReadUpTo |
Returns up to `num_records` (key, value) pairs produced by a Reader. |
| ReaderReset |
Restore a Reader to its initial clean state. |
| ReaderRestoreState |
Restore a reader to a previously saved state. |
| ReaderSerializeState |
Produce a string tensor that encodes the state of a Reader. |
| Real<U extends TNumber> |
Returns the real part of a complex number. |
| RealDiv<T extends TType> |
Returns x / y element-wise for real types. |
| RebatchDataset |
Creates a dataset that changes the batch size. |
| RebatchDatasetV2 |
Creates a dataset that changes the batch size. |
| Reciprocal<T extends TType> |
Computes the reciprocal of x element-wise. |
| ReciprocalGrad<T extends TType> |
Computes the gradient for the inverse of `x` wrt its input. |
| RecordInput |
Emits randomized records. |
| Recv<T extends TType> |
Receives the named tensor from another XLA computation. |
| RecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU. |
| Reduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
| ReduceAll |
Computes the "logical and" of elements across dimensions of a tensor. |
| ReduceAny |
Computes the "logical or" of elements across dimensions of a tensor. |
| ReduceJoin |
Joins a string Tensor across the given dimensions. |
| ReduceMax<T extends TType> |
Computes the maximum of elements across dimensions of a tensor. |
| ReduceMin<T extends TType> |
Computes the minimum of elements across dimensions of a tensor. |
| ReduceProd<T extends TType> |
Computes the product of elements across dimensions of a tensor. |
| ReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a tensor. |
| ReduceV2<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
| RefEnter<T extends TType> |
Creates or finds a child frame, and makes `data` available to the child frame. |
| RefExit<T extends TType> |
Exits the current frame to its parent frame. |
| RefIdentity<T extends TType> |
Return the same ref tensor as the input ref tensor. |
| RefMerge<T extends TType> |
Forwards the value of an available tensor from `inputs` to `output`. |
| RefNextIteration<T extends TType> |
Makes its input available to the next iteration. |
| RefSelect<T extends TType> |
Forwards the `index`th element of `inputs` to `output`. |
| RefSwitch<T extends TType> |
Forwards the ref tensor `data` to the output port determined by `pred`. |
| RegexFullMatch |
Check if the input matches the regex pattern. |
| RegexReplace |
Replaces matches of the `pattern` regular expression in `input` with the
replacement string provided in `rewrite`. |
| RegisterDataset |
Registers a dataset with the tf.data service. |
| Relu<T extends TType> |
Computes rectified linear: `max(features, 0)`. |
| Relu6<T extends TNumber> |
Computes rectified linear 6: `min(max(features, 0), 6)`. |
| Relu6Grad<T extends TNumber> |
Computes rectified linear 6 gradients for a Relu6 operation. |
| ReluGrad<T extends TNumber> |
Computes rectified linear gradients for a Relu operation. |
| RemoteFusedGraphExecute |
Execute a sub graph on a remote processor. |
| RepeatDataset |
Creates a dataset that emits the outputs of `input_dataset` `count` times. |
| ReplicaId |
Replica ID. |
| ReplicateMetadata |
Metadata indicating how the TPU computation should be replicated. |
| ReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation. |
| ReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation. |
| RequantizationRange |
Computes a range that covers the actual values present in a quantized tensor. |
| RequantizationRangePerChannel |
Computes requantization range per channel. |
| Requantize<U extends TType> |
Converts the quantized `input` tensor into a lower-precision `output`. |
| RequantizePerChannel<U extends TType> |
Requantizes input with min and max values known per channel. |
| Reshape<T extends TType> |
Reshapes a tensor. |
| ResizeArea |
Resize `images` to `size` using area interpolation. |
| ResizeBicubic |
Resize `images` to `size` using bicubic interpolation. |
| ResizeBicubicGrad<T extends TNumber> |
Computes the gradient of bicubic interpolation. |
| ResizeBilinear |
Resize `images` to `size` using bilinear interpolation. |
| ResizeBilinearGrad<T extends TNumber> |
Computes the gradient of bilinear interpolation. |
| ResizeNearestNeighbor<T extends TNumber> |
Resize `images` to `size` using nearest neighbor interpolation. |
| ResizeNearestNeighborGrad<T extends TNumber> |
Computes the gradient of nearest neighbor interpolation. |
| ResourceAccumulatorApplyGradient |
Applies a gradient to a given accumulator. |
| ResourceAccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators. |
| ResourceAccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step. |
| ResourceAccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator. |
| ResourceApplyAdaMax |
Update '*var' according to the AdaMax algorithm. |
| ResourceApplyAdadelta |
Update '*var' according to the adadelta scheme. |
| ResourceApplyAdagrad |
Update '*var' according to the adagrad scheme. |
| ResourceApplyAdagradDa |
Update '*var' according to the proximal adagrad scheme. |
| ResourceApplyAdam |
Update '*var' according to the Adam algorithm. |
| ResourceApplyAdamWithAmsgrad |
Update '*var' according to the Adam algorithm. |
| ResourceApplyAddSign |
Update '*var' according to the AddSign update. |
| ResourceApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm. |
| ResourceApplyFtrl |
Update '*var' according to the Ftrl-proximal scheme. |
| ResourceApplyGradientDescent |
Update '*var' by subtracting 'alpha' * 'delta' from it. |
| ResourceApplyKerasMomentum |
Update '*var' according to the momentum scheme. |
| ResourceApplyMomentum |
Update '*var' according to the momentum scheme. |
| ResourceApplyPowerSign |
Update '*var' according to the AddSign update. |
| ResourceApplyProximalAdagrad |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
| ResourceApplyProximalGradientDescent |
Update '*var' as FOBOS algorithm with fixed learning rate. |
| ResourceApplyRmsProp |
Update '*var' according to the RMSProp algorithm. |
| ResourceConditionalAccumulator |
A conditional accumulator for aggregating gradients. |
| ResourceCountUpTo<T extends TNumber> |
Increments variable pointed to by 'resource' until it reaches 'limit'. |
| ResourceGather<U extends TType> |
Gather slices from the variable pointed to by `resource` according to `indices`. |
| ResourceGatherNd<U extends TType> |
|
| ResourceScatterAdd |
Adds sparse updates to the variable referenced by `resource`. |
| ResourceScatterDiv |
Divides sparse updates into the variable referenced by `resource`. |
| ResourceScatterMax |
Reduces sparse updates into the variable referenced by `resource` using the `max` operation. |
| ResourceScatterMin |
Reduces sparse updates into the variable referenced by `resource` using the `min` operation. |
| ResourceScatterMul |
Multiplies sparse updates into the variable referenced by `resource`. |
| ResourceScatterNdAdd |
Applies sparse addition to individual values or slices in a Variable. |
| ResourceScatterNdMax |
|
| ResourceScatterNdMin |
|
| ResourceScatterNdSub |
Applies sparse subtraction to individual values or slices in a Variable. |
| ResourceScatterNdUpdate |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
| ResourceScatterSub |
Subtracts sparse updates from the variable referenced by `resource`. |
| ResourceScatterUpdate |
Assigns sparse updates to the variable referenced by `resource`. |
| ResourceSparseApplyAdadelta |
var: Should be from a Variable(). |
| ResourceSparseApplyAdagrad |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
| ResourceSparseApplyAdagradDa |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
| ResourceSparseApplyAdagradV2 |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
| ResourceSparseApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm. |
| ResourceSparseApplyFtrl |
Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
| ResourceSparseApplyKerasMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
| ResourceSparseApplyMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
| ResourceSparseApplyProximalAdagrad |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
| ResourceSparseApplyProximalGradientDescent |
Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
| ResourceSparseApplyRmsProp |
Update '*var' according to the RMSProp algorithm. |
| ResourceStridedSliceAssign |
Assign `value` to the sliced l-value reference of `ref`. |
| Restore |
Restores tensors from a V2 checkpoint. |
| RestoreSlice<T extends TType> |
Restores a tensor from checkpoint files. |
| RetrieveTPUEmbeddingADAMParameters |
Retrieve ADAM embedding parameters. |
| RetrieveTPUEmbeddingADAMParametersGradAccumDebug |
Retrieve ADAM embedding parameters with debug support. |
| RetrieveTPUEmbeddingAdadeltaParameters |
Retrieve Adadelta embedding parameters. |
| RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug |
Retrieve Adadelta embedding parameters with debug support. |
| RetrieveTPUEmbeddingAdagradParameters |
Retrieve Adagrad embedding parameters. |
| RetrieveTPUEmbeddingAdagradParametersGradAccumDebug |
Retrieve Adagrad embedding parameters with debug support. |
| RetrieveTPUEmbeddingCenteredRMSPropParameters |
Retrieve centered RMSProp embedding parameters. |
| RetrieveTPUEmbeddingFTRLParameters |
Retrieve FTRL embedding parameters. |
| RetrieveTPUEmbeddingFTRLParametersGradAccumDebug |
Retrieve FTRL embedding parameters with debug support. |
| RetrieveTPUEmbeddingMDLAdagradLightParameters |
Retrieve MDL Adagrad Light embedding parameters. |
| RetrieveTPUEmbeddingMomentumParameters |
Retrieve Momentum embedding parameters. |
| RetrieveTPUEmbeddingMomentumParametersGradAccumDebug |
Retrieve Momentum embedding parameters with debug support. |
| RetrieveTPUEmbeddingProximalAdagradParameters |
Retrieve proximal Adagrad embedding parameters. |
| RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug |
Retrieve proximal Adagrad embedding parameters with debug support. |
| RetrieveTPUEmbeddingProximalYogiParameters |
|
| RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug |
|
| RetrieveTPUEmbeddingRMSPropParameters |
Retrieve RMSProp embedding parameters. |
| RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug |
Retrieve RMSProp embedding parameters with debug support. |
| RetrieveTPUEmbeddingStochasticGradientDescentParameters |
Retrieve SGD embedding parameters. |
| RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |
Retrieve SGD embedding parameters with debug support. |
| Reverse<T extends TType> |
Reverses specific dimensions of a tensor. |
| ReverseSequence<T extends TType> |
Reverses variable length slices. |
| Rfft<U extends TType> |
Real-valued fast Fourier transform. |
| Rfft2d<U extends TType> |
2D real-valued fast Fourier transform. |
| Rfft3d<U extends TType> |
3D real-valued fast Fourier transform. |
| RgbToHsv<T extends TNumber> |
Converts one or more images from RGB to HSV. |
| RightShift<T extends TNumber> |
Elementwise computes the bitwise right-shift of `x` and `y`. |
| Rint<T extends TNumber> |
Returns element-wise integer closest to x. |
| RngReadAndSkip |
Advance the counter of a counter-based RNG. |
| RngSkip |
Advance the counter of a counter-based RNG. |
| Roll<T extends TType> |
Rolls the elements of a tensor along an axis. |
| Round<T extends TType> |
Rounds the values of a tensor to the nearest integer, element-wise. |
| Rpc |
Perform batches of RPC requests. |
| Rsqrt<T extends TType> |
Computes reciprocal of square root of x element-wise. |
| RsqrtGrad<T extends TType> |
Computes the gradient for the rsqrt of `x` wrt its input. |
| SampleDistortedBoundingBox<T extends TNumber> |
Generate a single randomly distorted bounding box for an image. |
| SamplingDataset |
Creates a dataset that takes a Bernoulli sample of the contents of another dataset. |
| Save |
Saves tensors in V2 checkpoint format. |
| SaveSlices |
Saves input tensors slices to disk. |
| ScalarSummary |
Outputs a `Summary` protocol buffer with scalar values. |
| ScaleAndTranslate |
|
| ScaleAndTranslateGrad<T extends TNumber> |
|
| ScatterAdd<T extends TType> |
Adds sparse updates to a variable reference. |
| ScatterDiv<T extends TType> |
Divides a variable reference by sparse updates. |
| ScatterMax<T extends TNumber> |
Reduces sparse updates into a variable reference using the `max` operation. |
| ScatterMin<T extends TNumber> |
Reduces sparse updates into a variable reference using the `min` operation. |
| ScatterMul<T extends TType> |
Multiplies sparse updates into a variable reference. |
| ScatterNd<U extends TType> |
Scatter `updates` into a new tensor according to `indices`. |
| ScatterNdAdd<T extends TType> |
Applies sparse addition to individual values or slices in a Variable. |
| ScatterNdMax<T extends TType> |
Computes element-wise maximum. |
| ScatterNdMin<T extends TType> |
Computes element-wise minimum. |
| ScatterNdNonAliasingAdd<T extends TType> |
Applies sparse addition to `input` using individual values or slices
from `updates` according to indices `indices`. |
| ScatterNdSub<T extends TType> |
Applies sparse subtraction to individual values or slices in a Variable. |
| ScatterNdUpdate<T extends TType> |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
| ScatterSub<T extends TType> |
Subtracts sparse updates to a variable reference. |
| ScatterUpdate<T extends TType> |
Applies sparse updates to a variable reference. |
| SdcaFprint |
Computes fingerprints of the input strings. |
| SdcaOptimizer |
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization. |
| SdcaShrinkL1 |
Applies L1 regularization shrink step on the parameters. |
| SegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor. |
| SegmentMean<T extends TType> |
Computes the mean along segments of a tensor. |
| SegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor. |
| SegmentProd<T extends TType> |
Computes the product along segments of a tensor. |
| SegmentSum<T extends TType> |
Computes the sum along segments of a tensor. |
| Select<T extends TType> |
|
| SelfAdjointEig<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
| Selu<T extends TNumber> |
Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`
if < 0, `scale * features` otherwise. |
| SeluGrad<T extends TNumber> |
Computes gradients for the scaled exponential linear (Selu) operation. |
| Send |
Sends the named tensor to another XLA computation. |
| SendTPUEmbeddingGradients |
Performs gradient updates of embedding tables. |
| SerializeIterator |
Converts the given `resource_handle` representing an iterator to a variant tensor. |
| SerializeManySparse<U extends TType> |
Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. |
| SerializeSparse<U extends TType> |
Serialize a `SparseTensor` into a `[3]` `Tensor` object. |
| SerializeTensor |
Transforms a Tensor into a serialized TensorProto proto. |
| SetDiff1d<T extends TType, U extends TNumber> |
Computes the difference between two lists of numbers or strings. |
| SetSize |
Number of unique elements along last dimension of input `set`. |
| SetStatsAggregatorDataset |
|
| Shape<U extends TNumber> |
Returns the shape of a tensor. |
| ShapeN<U extends TNumber> |
Returns shape of tensors. |
| ShardDataset |
Creates a `Dataset` that includes only 1/`num_shards` of this dataset. |
| ShardedFilename |
Generate a sharded filename. |
| ShardedFilespec |
Generate a glob pattern matching all sharded file names. |
| Sharding<T extends TType> |
An op which shards the input based on the given sharding attribute. |
| ShuffleAndRepeatDataset |
|
| ShuffleDataset |
|
| ShutdownDistributedTPU |
Shuts down a running distributed TPU system. |
| Sigmoid<T extends TType> |
Computes sigmoid of `x` element-wise. |
| SigmoidGrad<T extends TType> |
Computes the gradient of the sigmoid of `x` wrt its input. |
| Sign<T extends TType> |
Returns an element-wise indication of the sign of a number. |
| Sin<T extends TType> |
Computes sine of x element-wise. |
| Sinh<T extends TType> |
Computes hyperbolic sine of x element-wise. |
| Size<U extends TNumber> |
Returns the size of a tensor. |
| SkipDataset |
Creates a dataset that skips `count` elements from the `input_dataset`. |
| Skipgram |
Parses a text file and creates a batch of examples. |
| SleepDataset |
|
| Slice<T extends TType> |
Return a slice from 'input'. |
| SlidingWindowDataset |
Creates a dataset that passes a sliding window over `input_dataset`. |
| Snapshot<T extends TType> |
Returns a copy of the input tensor. |
| SobolSample<T extends TNumber> |
Generates points from the Sobol sequence. |
| Softmax<T extends TNumber> |
Computes softmax activations. |
| SoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate. |
| Softplus<T extends TNumber> |
Computes softplus: `log(exp(features) + 1)`. |
| SoftplusGrad<T extends TNumber> |
Computes softplus gradients for a softplus operation. |
| Softsign<T extends TNumber> |
Computes softsign: `features / (abs(features) + 1)`. |
| SoftsignGrad<T extends TNumber> |
Computes softsign gradients for a softsign operation. |
| Solve<T extends TType> |
Solves systems of linear equations. |
| Sort<T extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
. |
| SpaceToBatch<T extends TType> |
SpaceToBatch for 4-D tensors of type T. |
| SpaceToBatchNd<T extends TType> |
SpaceToBatch for N-D tensors of type T. |
| SpaceToDepth<T extends TType> |
SpaceToDepth for tensors of type T. |
| SparseAccumulatorApplyGradient |
Applies a sparse gradient to a given accumulator. |
| SparseAccumulatorTakeGradient<T extends TType> |
Extracts the average sparse gradient in a SparseConditionalAccumulator. |
| SparseAdd<T extends TType> |
Adds two `SparseTensor` objects to produce another `SparseTensor`. |
| SparseAddGrad<T extends TType> |
The gradient operator for the SparseAdd op. |
| SparseApplyAdadelta<T extends TType> |
var: Should be from a Variable(). |
| SparseApplyAdagrad<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
| SparseApplyAdagradDa<T extends TType> |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
| SparseApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm. |
| SparseApplyFtrl<T extends TType> |
Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
| SparseApplyMomentum<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
| SparseApplyProximalAdagrad<T extends TType> |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
| SparseApplyProximalGradientDescent<T extends TType> |
Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
| SparseApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm. |
| SparseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
| SparseConcat<T extends TType> |
Concatenates a list of `SparseTensor` along the specified dimension. |
| SparseConditionalAccumulator |
A conditional accumulator for aggregating sparse gradients. |
| SparseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a sparse tensor input. |
| SparseCross |
Generates sparse cross from a list of sparse and dense tensors. |
| SparseCrossHashed |
Generates sparse cross from a list of sparse and dense tensors. |
| SparseDenseCwiseAdd<T extends TType> |
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition. |
| SparseDenseCwiseDiv<T extends TType> |
Component-wise divides a SparseTensor by a dense Tensor. |
| SparseDenseCwiseMul<T extends TType> |
Component-wise multiplies a SparseTensor by a dense Tensor. |
| SparseFillEmptyRows<T extends TType> |
Fills empty rows in the input 2-D `SparseTensor` with a default value. |
| SparseFillEmptyRowsGrad<T extends TType> |
The gradient of SparseFillEmptyRows. |
| SparseMatMul |
Multiply matrix "a" by matrix "b". |
| SparseMatrixAdd |
Sparse addition of two CSR matrices, C = alpha * A + beta * B. |
| SparseMatrixMatMul<T extends TType> |
Matrix-multiplies a sparse matrix with a dense matrix. |
| SparseMatrixMul |
Element-wise multiplication of a sparse matrix with a dense tensor. |
| SparseMatrixNNZ |
Returns the number of nonzeroes of `sparse_matrix`. |
| SparseMatrixOrderingAMD |
Computes the Approximate Minimum Degree (AMD) ordering of `input`. |
| SparseMatrixSoftmax |
Calculates the softmax of a CSRSparseMatrix. |
| SparseMatrixSoftmaxGrad |
Calculates the gradient of the SparseMatrixSoftmax op. |
| SparseMatrixSparseCholesky |
Computes the sparse Cholesky decomposition of `input`. |
| SparseMatrixSparseMatMul |
Sparse-matrix-multiplies two CSR matrices `a` and `b`. |
| SparseMatrixTranspose |
Transposes the inner (matrix) dimensions of a CSRSparseMatrix. |
| SparseMatrixZeros |
Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. |
| SparseReduceMax<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor. |
| SparseReduceMaxSparse<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor. |
| SparseReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor. |
| SparseReduceSumSparse<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor. |
| SparseReorder<T extends TType> |
Reorders a SparseTensor into the canonical, row-major ordering. |
| SparseReshape |
Reshapes a SparseTensor to represent values in a new dense shape. |
| SparseSegmentMean<T extends TNumber> |
Computes the mean along sparse segments of a tensor. |
| SparseSegmentMeanGrad<T extends TNumber> |
Computes gradients for SparseSegmentMean. |
| SparseSegmentMeanWithNumSegments<T extends TNumber> |
Computes the mean along sparse segments of a tensor. |
| SparseSegmentSqrtN<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
| SparseSegmentSqrtNGrad<T extends TNumber> |
Computes gradients for SparseSegmentSqrtN. |
| SparseSegmentSqrtNWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
| SparseSegmentSum<T extends TNumber> |
Computes the sum along sparse segments of a tensor. |
| SparseSegmentSumWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor. |
| SparseSlice<T extends TType> |
Slice a `SparseTensor` based on the `start` and `size`. |
| SparseSliceGrad<T extends TType> |
The gradient operator for the SparseSlice op. |
| SparseSoftmax<T extends TNumber> |
Applies softmax to a batched N-D `SparseTensor`. |
| SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate. |
| SparseSparseMaximum<T extends TNumber> |
Returns the element-wise max of two SparseTensors. |
| SparseSparseMinimum<T extends TType> |
Returns the element-wise min of two SparseTensors. |
| SparseSplit<T extends TType> |
Split a `SparseTensor` into `num_split` tensors along one dimension. |
| SparseTensorDenseAdd<U extends TType> |
Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. |
| SparseTensorDenseMatMul<U extends TType> |
Multiply SparseTensor (of rank 2) "A" by dense matrix "B". |
| SparseTensorSliceDataset |
Creates a dataset that splits a SparseTensor into elements row-wise. |
| SparseTensorToCSRSparseMatrix |
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. |
| SparseToDense<U extends TType> |
Converts a sparse representation into a dense tensor. |
| SparseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 `SparseTensor` inputs. |
| Spence<T extends TNumber> |
|
| Split<T extends TType> |
Splits a tensor into `num_split` tensors along one dimension. |
| SplitV<T extends TType> |
Splits a tensor into `num_split` tensors along one dimension. |
| SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set. |
| Sqrt<T extends TType> |
Computes square root of x element-wise. |
| SqrtGrad<T extends TType> |
Computes the gradient for the sqrt of `x` wrt its input. |
| Sqrtm<T extends TType> |
Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
The input matrix should be invertible. |
| Square<T extends TType> |
Computes square of x element-wise. |
| SquaredDifference<T extends TType> |
Returns conj(x - y)(x - y) element-wise. |
| Squeeze<T extends TType> |
Removes dimensions of size 1 from the shape of a tensor. |
| Stack<T extends TType> |
Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. |
| Stage |
Stage values similar to a lightweight Enqueue. |
| StageClear |
Op removes all elements in the underlying container. |
| StagePeek |
Op peeks at the values at the specified index. |
| StageSize |
Op returns the number of elements in the underlying container. |
| StatefulRandomBinomial<V extends TNumber> |
|
| StatefulStandardNormal<U extends TType> |
Outputs random values from a normal distribution. |
| StatefulTruncatedNormal<U extends TType> |
Outputs random values from a truncated normal distribution. |
| StatefulUniform<U extends TType> |
Outputs random values from a uniform distribution. |
| StatefulUniformFullInt<U extends TType> |
Outputs random integers from a uniform distribution. |
| StatefulUniformInt<U extends TType> |
Outputs random integers from a uniform distribution. |
| StatelessMultinomial<V extends TNumber> |
Draws samples from a multinomial distribution. |
| StatelessParameterizedTruncatedNormal<V extends TNumber> |
|
| StatelessRandomBinomial<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a binomial distribution. |
| StatelessRandomGamma<V extends TNumber> |
Outputs deterministic pseudorandom random numbers from a gamma distribution. |
| StatelessRandomGetKeyCounterAlg |
Picks the best algorithm based on device, and scrambles seed into key and counter. |
| StatelessRandomNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution. |
| StatelessRandomNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution. |
| StatelessRandomPoisson<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a Poisson distribution. |
| StatelessRandomUniform<V extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution. |
| StatelessRandomUniformFullInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformFullIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformV2<U extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution. |
| StatelessSampleDistortedBoundingBox<T extends TNumber> |
Generate a randomly distorted bounding box for an image deterministically. |
| StatelessTruncatedNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution. |
| StatelessTruncatedNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution. |
| StaticRegexFullMatch |
Check if the input matches the regex pattern. |
| StaticRegexReplace |
Replaces the match of pattern in input with rewrite. |
| StatsAggregatorHandle |
|
| StatsAggregatorSetSummaryWriter |
Set a summary_writer_interface to record statistics using given stats_aggregator. |
| StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager. |
| StopGradient<T extends TType> |
Stops gradient computation. |
| StridedSlice<T extends TType> |
Return a strided slice from `input`. |
| StridedSliceAssign<T extends TType> |
Assign `value` to the sliced l-value reference of `ref`. |
| StridedSliceGrad<U extends TType> |
Returns the gradient of `StridedSlice`. |
| StringFormat |
Formats a string template using a list of tensors. |
| StringLength |
String lengths of `input`. |
| StringNGrams<T extends TNumber> |
Creates ngrams from ragged string data. |
| StringSplit |
Split elements of `source` based on `sep` into a `SparseTensor`. |
| Strip |
Strip leading and trailing whitespaces from the Tensor. |
| Sub<T extends TType> |
Returns x - y element-wise. |
| Substr |
Return substrings from `Tensor` of strings. |
| Sum<T extends TType> |
Computes the sum of elements across dimensions of a tensor. |
| SummaryWriter |
|
| Svd<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
| SwitchCond<T extends TType> |
Forwards `data` to the output port determined by `pred`. |
| TPUCompilationResult |
Returns the result of a TPU compilation. |
| TPUEmbeddingActivations |
An op enabling differentiation of TPU Embeddings. |
| TPUReplicateMetadata |
Metadata indicating how the TPU computation should be replicated. |
| TPUReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation. |
| TPUReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation. |
| TakeDataset |
Creates a dataset that contains `count` elements from the `input_dataset`. |
| TakeManySparseFromTensorsMap<T extends TType> |
Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. |
| Tan<T extends TType> |
Computes tan of x element-wise. |
| Tanh<T extends TType> |
Computes hyperbolic tangent of `x` element-wise. |
| TanhGrad<T extends TType> |
Computes the gradient for the tanh of `x` wrt its input. |
| TemporaryVariable<T extends TType> |
Returns a tensor that may be mutated, but only persists within a single step. |
| TensorArray |
An array of Tensors of given size. |
| TensorArrayClose |
Delete the TensorArray from its resource container. |
| TensorArrayConcat<T extends TType> |
Concat the elements from the TensorArray into value `value`. |
| TensorArrayGather<T extends TType> |
Gather specific elements from the TensorArray into output `value`. |
| TensorArrayGrad |
Creates a TensorArray for storing the gradients of values in the given handle. |
| TensorArrayGradWithShape |
Creates a TensorArray for storing multiple gradients of values in the given handle. |
| TensorArrayPack<T extends TType> |
|
| TensorArrayRead<T extends TType> |
Read an element from the TensorArray into output `value`. |
| TensorArrayScatter |
Scatter the data from the input value into specific TensorArray elements. |
| TensorArraySize |
Get the current size of the TensorArray. |
| TensorArraySplit |
Split the data from the input value into TensorArray elements. |
| TensorArrayUnpack |
|
| TensorArrayWrite |
Push an element onto the tensor_array. |
| TensorDataset |
Creates a dataset that emits `components` as a tuple of tensors once. |
| TensorDiag<T extends TType> |
Returns a diagonal tensor with a given diagonal values. |
| TensorDiagPart<T extends TType> |
Returns the diagonal part of the tensor. |
| TensorForestCreateTreeVariable |
Creates a tree resource and returns a handle to it. |
| TensorForestTreeDeserialize |
Deserializes a proto into the tree handle
|
| TensorForestTreeIsInitializedOp |
Checks whether a tree has been initialized. |
| TensorForestTreePredict |
Output the logits for the given input data
|
| TensorForestTreeResourceHandleOp |
Creates a handle to a TensorForestTreeResource
|
| TensorForestTreeSerialize |
Serializes the tree handle to a proto
|
| TensorForestTreeSize |
Get the number of nodes in a tree
|
| TensorListConcat<U extends TType> |
Concats all tensors in the list along the 0th dimension. |
| TensorListConcatLists |
|
| TensorListElementShape<T extends TNumber> |
The shape of the elements of the given list, as a tensor. |
| TensorListFromTensor |
Creates a TensorList which, when stacked, has the value of `tensor`. |
| TensorListGather<T extends TType> |
Creates a Tensor by indexing into the TensorList. |
| TensorListGetItem<T extends TType> |
|
| TensorListLength |
Returns the number of tensors in the input tensor list. |
| TensorListPopBack<T extends TType> |
Returns the last element of the input list as well as a list with all but that element. |
| TensorListPushBack |
Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. |
| TensorListPushBackBatch |
|
| TensorListReserve |
List of the given size with empty elements. |
| TensorListResize |
Resizes the list. |
| TensorListScatter |
Creates a TensorList by indexing into a Tensor. |
| TensorListScatterIntoExistingList |
Scatters tensor at indices in an input list. |
| TensorListSetItem |
|
| TensorListSplit |
Splits a tensor into a list. |
| TensorListStack<T extends TType> |
Stacks all tensors in the list. |
| TensorMapErase |
Returns a tensor map with item from given key erased. |
| TensorMapHasKey |
Returns whether the given key exists in the map. |
| TensorMapInsert |
Returns a map that is the 'input_handle' with the given key-value pair inserted. |
| TensorMapLookup<U extends TType> |
Returns the value from a given key in a tensor map. |
| TensorMapSize |
Returns the number of tensors in the input tensor map. |
| TensorMapStackKeys<T extends TType> |
Returns a Tensor stack of all keys in a tensor map. |
| TensorScatterNdAdd<T extends TType> |
Adds sparse `updates` to an existing tensor according to `indices`. |
| TensorScatterNdMax<T extends TType> |
|
| TensorScatterNdMin<T extends TType> |
|
| TensorScatterNdSub<T extends TType> |
Subtracts sparse `updates` from an existing tensor according to `indices`. |
| TensorScatterNdUpdate<T extends TType> |
Scatter `updates` into an existing tensor according to `indices`. |
| TensorSliceDataset |
Creates a dataset that emits each dim-0 slice of `components` once. |
| TensorStridedSliceUpdate<T extends TType> |
Assign `value` to the sliced l-value reference of `input`. |
| TensorSummary |
Outputs a `Summary` protocol buffer with a tensor and per-plugin data. |
| TextLineDataset |
Creates a dataset that emits the lines of one or more text files. |
| TextLineReader |
A Reader that outputs the lines of a file delimited by '\n'. |
| TfRecordDataset |
Creates a dataset that emits the records from one or more TFRecord files. |
| TfRecordReader |
A Reader that outputs the records from a TensorFlow Records file. |
| ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| Tile<T extends TType> |
Constructs a tensor by tiling a given tensor. |
| TileGrad<T extends TType> |
Returns the gradient of `Tile`. |
| Timestamp |
Provides the time since epoch in seconds. |
| ToBool |
Converts a tensor to a scalar predicate. |
| ToHashBucket |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
| ToHashBucketFast |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
| ToHashBucketStrong |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
| ToNumber<T extends TNumber> |
Converts each string in the input Tensor to the specified numeric type. |
| TopK<T extends TNumber> |
Finds values and indices of the `k` largest elements for the last dimension. |
| TopKUnique |
Returns the TopK unique values in the array in sorted order. |
| TopKWithUnique |
Returns the TopK values in the array in sorted order. |
| Transpose<T extends TType> |
Shuffle dimensions of x according to a permutation. |
| TriangularSolve<T extends TType> |
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. |
| TridiagonalMatMul<T extends TType> |
Calculate product with tridiagonal matrix. |
| TridiagonalSolve<T extends TType> |
Solves tridiagonal systems of equations. |
| TruncateDiv<T extends TType> |
Returns x / y element-wise for integer types. |
| TruncateMod<T extends TNumber> |
Returns element-wise remainder of division. |
| TruncatedNormal<U extends TNumber> |
Outputs random values from a truncated normal distribution. |
| TryRpc |
Perform batches of RPC requests. |
| Unbatch<T extends TType> |
Reverses the operation of Batch for a single output Tensor. |
| UnbatchDataset |
A dataset that splits the elements of its input into multiple elements. |
| UnbatchGrad<T extends TType> |
Gradient of Unbatch. |
| UncompressElement |
Uncompresses a compressed dataset element. |
| UnicodeDecode<T extends TNumber> |
Decodes each string in `input` into a sequence of Unicode code points. |
| UnicodeDecodeWithOffsets<T extends TNumber> |
Decodes each string in `input` into a sequence of Unicode code points. |
| UnicodeEncode |
Encode a tensor of ints into unicode strings. |
| UnicodeScript |
Determine the script codes of a given tensor of Unicode integer code points. |
| UnicodeTranscode |
Transcode the input text from a source encoding to a destination encoding. |
| UniformCandidateSampler |
Generates labels for candidate sampling with a uniform distribution. |
| Unique<T extends TType, V extends TNumber> |
Finds unique elements along an axis of a tensor. |
| UniqueDataset |
Creates a dataset that contains the unique elements of `input_dataset`. |
| UniqueWithCounts<T extends TType, V extends TNumber> |
Finds unique elements along an axis of a tensor. |
| UnravelIndex<T extends TNumber> |
Converts an array of flat indices into a tuple of coordinate arrays. |
| UnsortedSegmentJoin |
Joins the elements of `inputs` based on `segment_ids`. |
| UnsortedSegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor. |
| UnsortedSegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor. |
| UnsortedSegmentProd<T extends TType> |
Computes the product along segments of a tensor. |
| UnsortedSegmentSum<T extends TType> |
Computes the sum along segments of a tensor. |
| Unstack<T extends TType> |
Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. |
| Unstage |
Op is similar to a lightweight Dequeue. |
| UnwrapDatasetVariant |
|
| Upper |
Converts all lowercase characters into their respective uppercase replacements. |
| UpperBound<U extends TNumber> |
Applies upper_bound(sorted_search_values, values) along each row. |
| VarHandleOp |
Creates a handle to a Variable resource. |
| VarIsInitializedOp |
Checks whether a resource handle-based variable has been initialized. |
| Variable<T extends TType> |
Holds state in the form of a tensor that persists across steps. |
| VariableShape<T extends TNumber> |
Returns the shape of the variable pointed to by `resource`. |
| Where |
Returns locations of nonzero / true values in a tensor. |
| WholeFileReader |
A Reader that outputs the entire contents of a file as a value. |
| WindowDataset |
Combines (nests of) input elements into a dataset of (nests of) windows. |
| WorkerHeartbeat |
Worker heartbeat op. |
| WrapDatasetVariant |
|
| WriteAudioSummary |
Writes an audio summary. |
| WriteFile |
Writes contents to the file at input filename. |
| WriteGraphSummary |
Writes a graph summary. |
| WriteHistogramSummary |
Writes a histogram summary. |
| WriteImageSummary |
Writes an image summary. |
| WriteRawProtoSummary |
Writes a serialized proto summary. |
| WriteScalarSummary |
Writes a scalar summary. |
| WriteSummary |
Writes a tensor summary. |
| Xdivy<T extends TType> |
Returns 0 if x == 0, and x / y otherwise, elementwise. |
| XlaRecvFromHost<T extends TType> |
An op to receive a tensor from the host. |
| XlaSendToHost |
An op to send a tensor to the host. |
| XlaSetBound |
Set a bound for the given input value as a hint to Xla compiler,
returns the same value. |
| XlaSpmdFullToShardShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from automatic partitioning to
manual partitioning. |
| XlaSpmdShardToFullShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from manual partitioning to
automatic partitioning. |
| Xlog1py<T extends TType> |
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. |
| Xlogy<T extends TType> |
Returns 0 if x == 0, and x * log(y) otherwise, elementwise. |
| ZerosLike<T extends TType> |
Returns a tensor of zeros with the same shape and type as x. |
| Zeta<T extends TNumber> |
Compute the Hurwitz zeta function \\(\zeta(x, q)\\). |
| ZipDataset |
Creates a dataset that zips together `input_datasets`. |
| erfinv<T extends TNumber> |
|