BinaryCrossentropy

public class BinaryCrossentropy

Computes the cross-entropy loss between true labels and predicted labels.

Use this cross-entropy loss when there are only two label classes (assumed to be 0 and 1). For each example, there should be a single floating-point value per prediction.

Standalone usage:

    Operand<TFloat32> labels =
        tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} });
    Operand<TFloat32> predictions =
        tf.constant(new float[][] { {0.6f, 0.4f}, {0.4f, 0.6f} });
    BinaryCrossentropy bce = new BinaryCrossentropy(tf);
    Operand<TFloat32> result = bce.call(labels, predictions);
    // produces 0.815
 

Calling with sample weight:

    Operand<TFloat32> sampleWeight = tf.constant(new float[] {1.f, 0.f});
    Operand<TFloat32> result = bce.call(labels, predictions, sampleWeight);
    // produces 0.458f
 

Using SUM reduction type:

    BinaryCrossentropy bce = new BinaryCrossentropy(tf, Reduction.SUM);
    Operand<TFloat32> result = bce.call(labels, predictions);
    // produces 1.630f
 

Using NONE reduction type:

    BinaryCrossentropy bce = new BinaryCrossentropy(tf, Reduction.NONE);
    Operand<TFloat32> result = bce.call(labels, predictions);
    // produces [0.916f, 0.714f]
 

Constants

boolean FROM_LOGITS_DEFAULT
float LABEL_SMOOTHING_DEFAULT

Inherited Fields

Public Constructors

BinaryCrossentropy(Ops tf)
Creates a Binary Crossentropy Loss using getSimpleName() as the loss name, FROM_LOGITS_DEFAULT for fromLogits, LABEL_SMOOTHING_DEFAULT for labelSmoothing and a Loss Reduction of REDUCTION_DEFAULT
BinaryCrossentropy(Ops tf, Reduction reduction)
Creates a Binary Crossentropy loss using getSimpleName() as the loss name, FROM_LOGITS_DEFAULT for fromLogits, and LABEL_SMOOTHING_DEFAULT for labelSmoothing
BinaryCrossentropy(Ops tf, boolean fromLogits)
Creates a Binary Crossentropy loss using using getSimpleName() as the loss name, labelSmoothing of LABEL_SMOOTHING_DEFAULT, a reduction of REDUCTION_DEFAULT,
BinaryCrossentropy(Ops tf, String name, boolean fromLogits)
Creates a Binary Crossentropy loss using labelSmoothing of LABEL_SMOOTHING_DEFAULT a reduction of REDUCTION_DEFAULT.
BinaryCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing)
Creates a Binary Crossentropy loss using using getSimpleName() as the loss name, and a reduction of REDUCTION_DEFAULT.
BinaryCrossentropy(Ops tf, String name, boolean fromLogits, float labelSmoothing)
Creates a Binary Crossentropy loss using a reduction of REDUCTION_DEFAULT.
BinaryCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing, Reduction reduction)
Creates a Binary Crossentropy loss
BinaryCrossentropy(Ops tf, String name, boolean fromLogits, float labelSmoothing, Reduction reduction)
Creates a Binary Crossentropy loss

Public Methods

<T extends TNumber> Operand<T>
call(Operand<? extends TNumber> labels, Operand<T> predictions, Operand<T> sampleWeights)
Generates an Operand that calculates the loss.

Inherited Methods

Constants

public static final boolean FROM_LOGITS_DEFAULT

Constant Value: false

public static final float LABEL_SMOOTHING_DEFAULT

Constant Value: 0.0

Public Constructors

public BinaryCrossentropy (Ops tf)

Creates a Binary Crossentropy Loss using getSimpleName() as the loss name, FROM_LOGITS_DEFAULT for fromLogits, LABEL_SMOOTHING_DEFAULT for labelSmoothing and a Loss Reduction of REDUCTION_DEFAULT

Parameters
tf the TensorFlow Ops

public BinaryCrossentropy (Ops tf, Reduction reduction)

Creates a Binary Crossentropy loss using getSimpleName() as the loss name, FROM_LOGITS_DEFAULT for fromLogits, and LABEL_SMOOTHING_DEFAULT for labelSmoothing

Parameters
tf the TensorFlow Ops
reduction Type of Reduction to apply to the loss.

public BinaryCrossentropy (Ops tf, boolean fromLogits)

Creates a Binary Crossentropy loss using using getSimpleName() as the loss name, labelSmoothing of LABEL_SMOOTHING_DEFAULT, a reduction of REDUCTION_DEFAULT,

Parameters
tf the TensorFlow Ops
fromLogits Whether to interpret predictions as a tensor of logit values

public BinaryCrossentropy (Ops tf, String name, boolean fromLogits)

Creates a Binary Crossentropy loss using labelSmoothing of LABEL_SMOOTHING_DEFAULT a reduction of REDUCTION_DEFAULT.

Parameters
tf the TensorFlow Ops
name the name of the loss
fromLogits Whether to interpret predictions as a tensor of logit values

public BinaryCrossentropy (Ops tf, boolean fromLogits, float labelSmoothing)

Creates a Binary Crossentropy loss using using getSimpleName() as the loss name, and a reduction of REDUCTION_DEFAULT.

Parameters
tf the TensorFlow Ops
fromLogits Whether to interpret predictions as a tensor of logit values
labelSmoothing A number in the range, [0, 1]. When 0, no smoothing occurs. When > 0, compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of labelSmoothing correspond to heavier smoothing.

public BinaryCrossentropy (Ops tf, String name, boolean fromLogits, float labelSmoothing)

Creates a Binary Crossentropy loss using a reduction of REDUCTION_DEFAULT.

Parameters
tf the TensorFlow Ops
name the name of the loss
fromLogits Whether to interpret predictions as a tensor of logit values
labelSmoothing A number in the range, [0, 1]. When 0, no smoothing occurs. When > 0, compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of labelSmoothing correspond to heavier smoothing.

public BinaryCrossentropy (Ops tf, boolean fromLogits, float labelSmoothing, Reduction reduction)

Creates a Binary Crossentropy loss

Parameters
tf the TensorFlow Ops
fromLogits Whether to interpret predictions as a tensor of logit values
labelSmoothing A number in the range, [0, 1]. When 0, no smoothing occurs. When > 0, compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of labelSmoothing correspond to heavier smoothing.
reduction Type of Reduction to apply to the loss.

public BinaryCrossentropy (Ops tf, String name, boolean fromLogits, float labelSmoothing, Reduction reduction)

Creates a Binary Crossentropy loss

Parameters
tf the TensorFlow Ops
name the name of the loss
fromLogits Whether to interpret predictions as a tensor of logit values
labelSmoothing A number in the range, [0, 1]. When 0, no smoothing occurs. When > 0, compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values of labelSmoothing correspond to heavier smoothing.
reduction Type of Reduction to apply to the loss.
Throws
IllegalArgumentException if labelSmoothing is not in the inclusive range of 0. - 1.

Public Methods

public Operand<T> call (Operand<? extends TNumber> labels, Operand<T> predictions, Operand<T> sampleWeights)

Generates an Operand that calculates the loss.

If run in Graph mode, the computation will throw TFInvalidArgumentException if the predictions values are outside the range o [0. to 1.]. In Eager Mode, this call will throw IllegalArgumentException, if the predictions values are outside the range o [0. to 1.]

Parameters
labels the truth values or labels
predictions the predictions, values must be in the range [0. to 1.] inclusive.
sampleWeights Optional SampleWeights acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If SampleWeights is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the SampleWeights vector. If the shape of SampleWeights is [batch_size, d0, .. dN-1] (or can be broadcast to this shape), then each loss element of predictions is scaled by the corresponding value of SampleWeights. (Note on dN-1: all loss functions reduce by 1 dimension, usually axis=-1.)
Returns
  • the loss
Throws
IllegalArgumentException if the predictions are outside the range [0.-1.].