TensorShapeProto.Builder

public static final class TensorShapeProto.Builder

 Dimensions of a tensor.
 
Protobuf type tensorflow.TensorShapeProto

Public Methods

TensorShapeProto.Builder
addAllDim(Iterable<? extends TensorShapeProto.Dim> values)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
addDim(TensorShapeProto.Dim.Builder builderForValue)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
addDim(int index, TensorShapeProto.Dim.Builder builderForValue)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
addDim(int index, TensorShapeProto.Dim value)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
addDim(TensorShapeProto.Dim value)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Dim.Builder
addDimBuilder()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Dim.Builder
addDimBuilder(int index)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
TensorShapeProto
build()
TensorShapeProto
TensorShapeProto.Builder
clear()
TensorShapeProto.Builder
clearDim()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
TensorShapeProto.Builder
clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
TensorShapeProto.Builder
clearUnknownRank()
 If true, the number of dimensions in the shape is unknown.
TensorShapeProto.Builder
clone()
TensorShapeProto
final static com.google.protobuf.Descriptors.Descriptor
com.google.protobuf.Descriptors.Descriptor
TensorShapeProto.Dim
getDim(int index)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Dim.Builder
getDimBuilder(int index)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
List<TensorShapeProto.Dim.Builder>
getDimBuilderList()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
int
getDimCount()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
List<TensorShapeProto.Dim>
getDimList()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.DimOrBuilder
getDimOrBuilder(int index)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
List<? extends TensorShapeProto.DimOrBuilder>
getDimOrBuilderList()
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
boolean
getUnknownRank()
 If true, the number of dimensions in the shape is unknown.
final boolean
TensorShapeProto.Builder
mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
TensorShapeProto.Builder
mergeFrom(com.google.protobuf.Message other)
final TensorShapeProto.Builder
mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
TensorShapeProto.Builder
removeDim(int index)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
setDim(int index, TensorShapeProto.Dim value)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
setDim(int index, TensorShapeProto.Dim.Builder builderForValue)
 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.
TensorShapeProto.Builder
setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value)
TensorShapeProto.Builder
setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
final TensorShapeProto.Builder
setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
TensorShapeProto.Builder
setUnknownRank(boolean value)
 If true, the number of dimensions in the shape is unknown.

Inherited Methods

Public Methods

public TensorShapeProto.Builder addAllDim (Iterable<? extends TensorShapeProto.Dim> values)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder addDim (TensorShapeProto.Dim.Builder builderForValue)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder addDim (int index, TensorShapeProto.Dim.Builder builderForValue)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder addDim (int index, TensorShapeProto.Dim value)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder addDim (TensorShapeProto.Dim value)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Dim.Builder addDimBuilder ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Dim.Builder addDimBuilder (int index)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder addRepeatedField (com.google.protobuf.Descriptors.FieldDescriptor field, Object value)

public TensorShapeProto build ()

public TensorShapeProto buildPartial ()

public TensorShapeProto.Builder clear ()

public TensorShapeProto.Builder clearDim ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder clearField (com.google.protobuf.Descriptors.FieldDescriptor field)

public TensorShapeProto.Builder clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof)

public TensorShapeProto.Builder clearUnknownRank ()

 If true, the number of dimensions in the shape is unknown.
 If true, "dim.size()" must be 0.
 
bool unknown_rank = 3;

public TensorShapeProto.Builder clone ()

public TensorShapeProto getDefaultInstanceForType ()

public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()

public com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()

public TensorShapeProto.Dim getDim (int index)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Dim.Builder getDimBuilder (int index)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public List<TensorShapeProto.Dim.Builder> getDimBuilderList ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public int getDimCount ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public List<TensorShapeProto.Dim> getDimList ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.DimOrBuilder getDimOrBuilder (int index)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public List<? extends TensorShapeProto.DimOrBuilder> getDimOrBuilderList ()

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public boolean getUnknownRank ()

 If true, the number of dimensions in the shape is unknown.
 If true, "dim.size()" must be 0.
 
bool unknown_rank = 3;

public final boolean isInitialized ()

public TensorShapeProto.Builder mergeFrom (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Throws
IOException

public TensorShapeProto.Builder mergeFrom (com.google.protobuf.Message other)

public final TensorShapeProto.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields)

public TensorShapeProto.Builder removeDim (int index)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder setDim (int index, TensorShapeProto.Dim value)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder setDim (int index, TensorShapeProto.Dim.Builder builderForValue)

 Dimensions of the tensor, such as {"input", 30}, {"output", 40}
 for a 30 x 40 2D tensor.  If an entry has size -1, this
 corresponds to a dimension of unknown size. The names are
 optional.
 The order of entries in "dim" matters: It indicates the layout of the
 values in the tensor in-memory representation.
 The first entry in "dim" is the outermost dimension used to layout the
 values, the last entry is the innermost dimension.  This matches the
 in-memory layout of RowMajor Eigen tensors.
 If "dim.size()" > 0, "unknown_rank" must be false.
 
repeated .tensorflow.TensorShapeProto.Dim dim = 2;

public TensorShapeProto.Builder setField (com.google.protobuf.Descriptors.FieldDescriptor field, Object value)

public TensorShapeProto.Builder setRepeatedField (com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value)

public final TensorShapeProto.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields)

public TensorShapeProto.Builder setUnknownRank (boolean value)

 If true, the number of dimensions in the shape is unknown.
 If true, "dim.size()" must be 0.
 
bool unknown_rank = 3;