Nested Classes
| class | BooleanMaskUpdate.Options | Optional attributes for BooleanMaskUpdate
|
|
Public Constructors
Public Methods
| static BooleanMaskUpdate.Options |
axis(Integer axis)
Used to indicate the axis to mask from.
|
| static BooleanMaskUpdate.Options |
broadcast(Boolean broadcast)
Whether to try broadcasting update.
|
| static <T extends TType> Operand<T> |
Inherited Methods
Public Constructors
public BooleanMaskUpdate ()
Public Methods
public static BooleanMaskUpdate.Options axis (Integer axis)
Used to indicate the axis to mask from. axis + dim(mask) <= dim(tensor) and mask's shape must match
the first axis + dim(mask) dimensions of tensor's shape.
Parameters
| axis | the axis to mask from. Uses 0 if null. |
|---|
public static BooleanMaskUpdate.Options broadcast (Boolean broadcast)
Whether to try broadcasting update. True by default.
public static Operand<T> create (Scope scope, Operand<T> tensor, Operand<TBool> mask, Operand<T> updates, Options... options)
Updates a tensor at the masked values, and returns the updated tensor. Does not mutate the input tensors. updates will be broadcasted by default
Numpy equivalent is `tensor[mask] = updates`.
In general, 0 < dim(mask) = K <= dim(tensor), and mask's shape must match the first K dimensions of
tensor's shape. We then have: booleanMask(tensor, mask)[i, j1,...,jd] =
tensor[i1,...,iK,j1,...,jd] where (i1,...,iK) is the ith true entry of mask (row-major
order).
The axis could be used with mask to indicate the axis to mask from (it's 0 by default). In that
case, axis + dim(mask) <= dim(tensor) and mask's shape must match the first axis +
dim(mask) dimensions of tensor's shape.
The shape of updates should be [n, t_1, t_2, ...] where n is the number of true values in
mask and t_i is the ith dimension of tensor after axis and mask.
updates will be broadcasted to this shape by default, which can be disabled using options.
Parameters
| tensor | The tensor to mask. |
|---|---|
| mask | The mask to apply. |
| updates | the new values |
| options | carries optional attributes values |
Returns
- The masked tensor.