NdArraySequence
Stay organized with collections
Save and categorize content based on your preferences.
Known Indirect Subclasses
|
A sequence of elements of an N-dimensional array.
An NdArraySequence
is used to traverse an NdArray
in a given dimension
and visit each of its elements. For example, given a n x m
matrix on the [x, y]
axes,
elements are iterated in the following order:
x0y0, x0y1, ..., x0ym-1, x1y0, x1y1, ..., xn-1ym-1
Public Methods
abstract
NdArraySequence<T>
|
asSlices()
Returns each element as a new slice.
|
abstract
void
|
forEachIndexed(BiConsumer<long[], T> consumer)
Visit each elements of this iteration and their respective coordinates.
|
Inherited Methods
From interface
java.lang.Iterable
abstract
void
|
forEach(Consumer<? super T> arg0)
|
abstract
Iterator<T>
|
iterator()
|
abstract
Spliterator<T>
|
spliterator()
|
Public Methods
public
abstract
NdArraySequence<T>
asSlices
()
Returns each element as a new slice.
Unlike conventional Java collections, elements of a NdArraySequence
are transient, i.e. new NdArray
instances are allocated for each iteration. To improve performance, the same instance can be recycled to view
all elements of this sequence, using a DataBufferWindow
.
In some cases though, it might be preferable to disable such optimizations to ensure that each element returned is a
new slice of the original array. For example, if one or more elements visited must live beyond the scope of the sequence
iteration, asSlices()
makes sure that all elements returned by the sequence are unique instances.
final List<IntNdArray> vectors = new ArrayList<>();
IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));
ndArray.elements(0).forEach(e -> vectors::add); // Not safe, as `e` might always be the same recycled instance
ndArray.elements(0).asSlices().forEach(e -> vectors::add); // Safe, each `e` is a distinct NdArray instance
Returns
- a sequence that returns each elements iterated as a new slice
public
abstract
void
forEachIndexed
(BiConsumer<long[], T> consumer)
Visit each elements of this iteration and their respective coordinates.
Important: the consumer method should not keep a reference to the coordinates
as they might be mutable and reused during the iteration to improve performance.
Parameters
consumer |
method to invoke for each elements
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2021-11-29 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-11-29 UTC."],[],[],null,["# NdArraySequence\n\npublic interface **NdArraySequence** \n\n|---|---|---|\n| Known Indirect Subclasses [FastElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/FastElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e, [SingleElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e, [SlicingElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SlicingElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------| | [FastElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/FastElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | A sequence recycling the same `NdArray` instance when iterating its elements | | [SingleElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | A sequence of one single element | | [SlicingElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SlicingElementSequence)\\\u003cT, U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | A sequence creating a new `NdArray` instance (slice) for each element of an iteration | |||\n\nA sequence of elements of an N-dimensional array.\n\nAn `NdArraySequence` is used to traverse an `NdArray` in a given dimension\nand visit each of its elements. For example, given a `n x m` matrix on the `[x, y]` axes,\nelements are iterated in the following order:\n\nx~0~y~0~, x~0~y~1~, ..., x~0~y~m-1~, x~1~y~0~, x~1~y~1~, ..., x~n-1~y~m-1~\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cT\\\u003e | [asSlices](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#asSlices())() Returns each element as a new slice. |\n| abstract void | [forEachIndexed](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#forEachIndexed(java.util.function.BiConsumer\u003clong[], T\u003e))(BiConsumer\\\u003clong\\[\\], T\\\u003e consumer) Visit each elements of this iteration and their respective coordinates. |\n\n### Inherited Methods\n\nFrom interface java.lang.Iterable \n\n|---------------------------|-------------------------------------|\n| abstract void | forEach(Consumer\\\u003c? super T\\\u003e arg0) |\n| abstract Iterator\\\u003cT\\\u003e | iterator() |\n| abstract Spliterator\\\u003cT\\\u003e | spliterator() |\n\nPublic Methods\n--------------\n\n#### public abstract [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cT\\\u003e\n**asSlices**\n()\n\nReturns each element as a new slice.\n\nUnlike conventional Java collections, elements of a `NdArraySequence` are transient, i.e. new `NdArray`\ninstances are allocated for each iteration. To improve performance, the same instance can be recycled to view\nall elements of this sequence, using a [DataBufferWindow](/jvm/api_docs/java/org/tensorflow/ndarray/buffer/DataBufferWindow).\n\nIn some cases though, it might be preferable to disable such optimizations to ensure that each element returned is a\nnew slice of the original array. For example, if one or more elements visited must live beyond the scope of the sequence\niteration, `asSlices()` makes sure that all elements returned by the sequence are unique instances.\n\n final List\u003cIntNdArray\u003e vectors = new ArrayList\u003c\u003e();\n IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));\n ndArray.elements(0).forEach(e -\u003e vectors::add); // Not safe, as `e` might always be the same recycled instance\n ndArray.elements(0).asSlices().forEach(e -\u003e vectors::add); // Safe, each `e` is a distinct NdArray instance\n \n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n##### Returns\n\n- a sequence that returns each elements iterated as a new slice \n\n##### See Also\n\n- [DataBufferWindow](/jvm/api_docs/java/org/tensorflow/ndarray/buffer/DataBufferWindow) \n\n#### public abstract void\n**forEachIndexed**\n(BiConsumer\\\u003clong\\[\\], T\\\u003e consumer)\n\nVisit each elements of this iteration and their respective coordinates.\n\n*Important: the consumer method should not keep a reference to the coordinates\nas they might be mutable and reused during the iteration to improve performance.*\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| consumer | method to invoke for each elements |\n|----------|------------------------------------|"]]