A Metric that computes the categorical cross-entropy loss between true labels and predicted labels.
This is the crossentropy metric class to be used when there are multiple label classes (2 or
more). The labels should be given as a one_hot representation. eg., When labels values are
[2, 0, 1]
, the labels Operand contains = [[0, 0, 1], [1, 0, 0], [0, 1, 0]]
.
Inherited Constants
Public Constructors
CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float labelSmoothing, long seed, Class<T> type)
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the
labels and predictions.
|
|
CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float labelSmoothing, int axis, long seed, Class<T> type)
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the
labels and predictions.
|
Public Methods
Operand<T> |
Inherited Methods
Public Constructors
public CategoricalCrossentropy (Ops tf, String name, boolean fromLogits, float labelSmoothing, long seed, Class<T> type)
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
Uses a CHANNELS_LAST
for the channel axis.
Parameters
tf | the TensorFlow Ops |
---|---|
name | the name of this metric, if null then metric name is getSimpleName() . |
fromLogits | Whether to interpret predictions as a tensor of logit values oras opposed to a probability distribution. |
labelSmoothing | value used to smooth labels, When > 0, label values are smoothed,
meaning the confidence on label values are relaxed. e.g. labelSmoothing=0.2
means that we will use a value of 0.1 for label 0 and 0.9
for label 1 |
seed | the seed for random number generation. An initializer created with a given seed will always produce the same random tensor for a given shape and data type. |
type | the type for the variables and result |
public CategoricalCrossentropy (Ops tf, String name, boolean fromLogits, float labelSmoothing, int axis, long seed, Class<T> type)
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
Parameters
tf | the TensorFlow Ops |
---|---|
name | the name of this metric, if null then metric name is getSimpleName() . |
fromLogits | Whether to interpret predictions as a tensor of logit values as opposed to a probability distribution. |
labelSmoothing | value used to smooth labels, When > 0, label values are smoothed,
meaning the confidence on label values are relaxed. e.g. labelSmoothing=0.2
means that we will use a value of 0.1 for label 0 and 0.9
for label 1 |
axis | Int specifying the channels axis. axis=
corresponds to data format channels_last , and
axis= corresponds to data format
channels_first . |
seed | the seed for random number generation. An initializer created with a given seed will always produce the same random tensor for a given shape and data type. |
type | the type for the variables and result |