public class
SparseCategoricalCrossentropy
A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels.
Inherited Constants
Public Constructors
SparseCategoricalCrossentropy(Ops tf, String name, boolean fromLogits, int axis, long seed, Class<T> type)
Creates a SparseCategoricalCrossentropy metric
|
Public Methods
Operand<T> |
Inherited Methods
Public Constructors
public SparseCategoricalCrossentropy (Ops tf, String name, boolean fromLogits, int axis, long seed, Class<T> type)
Creates a SparseCategoricalCrossentropy metric
Parameters
tf | the TensorFlow Ops |
---|---|
name | the name of this metric, if null then metric name is getSimpleName() . |
fromLogits | Whether to interpret predictions as a tensor of logit values as opposed to a probability distribution. |
axis | The dimension along which the entropy is computed. |
seed | the seed for random number generation. An initializer created with a given seed will always produce the same random tensor for a given shape and data type. |
type | the type for the variables and result |