tf.raw_ops.ParallelFilterDataset
Stay organized with collections
Save and categorize content based on your preferences.
Creates a dataset containing elements of input_dataset
matching predicate
.
tf.raw_ops.ParallelFilterDataset(
input_dataset,
other_arguments,
num_parallel_calls,
predicate,
output_types,
output_shapes,
deterministic='default',
metadata='',
name=None
)
The predicate
function must return a scalar boolean and accept the
following arguments:
- One tensor for each component of an element of
input_dataset
.
- One tensor for each value in
other_arguments
.
Unlike a "FilterDataset", which applies predicate
sequentially, this dataset
invokes up to num_parallel_calls
copies of predicate
in parallel.
Args |
input_dataset
|
A Tensor of type variant .
|
other_arguments
|
A list of Tensor objects.
A list of tensors, typically values that were captured when
building a closure for predicate .
|
num_parallel_calls
|
A Tensor of type int64 .
The number of concurrent invocations of predicate that process
elements from input_dataset in parallel.
|
predicate
|
A function decorated with @Defun.
A function returning a scalar boolean.
|
output_types
|
A list of tf.DTypes that has length >= 1 .
|
output_shapes
|
A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 .
|
deterministic
|
An optional string . Defaults to "default" .
A string indicating the op-level determinism to use. Deterministic controls
whether the interleave is allowed to return elements out of order if the next
element to be returned isn't available, but a later element is. Options are
"true", "false", and "default". "default" indicates that determinism should be
decided by the experimental_deterministic parameter of tf.data.Options .
|
metadata
|
An optional string . Defaults to "" .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type variant .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.ParallelFilterDataset\n\n\u003cbr /\u003e\n\nCreates a dataset containing elements of `input_dataset` matching `predicate`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.ParallelFilterDataset`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/ParallelFilterDataset)\n\n\u003cbr /\u003e\n\n tf.raw_ops.ParallelFilterDataset(\n input_dataset,\n other_arguments,\n num_parallel_calls,\n predicate,\n output_types,\n output_shapes,\n deterministic='default',\n metadata='',\n name=None\n )\n\nThe `predicate` function must return a scalar boolean and accept the\nfollowing arguments:\n\n- One tensor for each component of an element of `input_dataset`.\n- One tensor for each value in `other_arguments`.\n\nUnlike a \"FilterDataset\", which applies `predicate` sequentially, this dataset\ninvokes up to `num_parallel_calls` copies of `predicate` in parallel.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_dataset` | A `Tensor` of type `variant`. |\n| `other_arguments` | A list of `Tensor` objects. A list of tensors, typically values that were captured when building a closure for `predicate`. |\n| `num_parallel_calls` | A `Tensor` of type `int64`. The number of concurrent invocations of `predicate` that process elements from `input_dataset` in parallel. |\n| `predicate` | A function decorated with @Defun. A function returning a scalar boolean. |\n| `output_types` | A list of `tf.DTypes` that has length `\u003e= 1`. |\n| `output_shapes` | A list of shapes (each a [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`) that has length `\u003e= 1`. |\n| `deterministic` | An optional `string`. Defaults to `\"default\"`. A string indicating the op-level determinism to use. Deterministic controls whether the interleave is allowed to return elements out of order if the next element to be returned isn't available, but a later element is. Options are \"true\", \"false\", and \"default\". \"default\" indicates that determinism should be decided by the `experimental_deterministic` parameter of [`tf.data.Options`](../../tf/data/Options). |\n| `metadata` | An optional `string`. Defaults to `\"\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `variant`. ||\n\n\u003cbr /\u003e"]]