View source on GitHub |
Applies a boolean mask to data
without flattening the mask dimensions.
tf.ragged.boolean_mask(
data, mask, name=None
)
Used in the notebooks
Used in the guide |
---|
Returns a potentially ragged tensor that is formed by retaining the elements
in data
where the corresponding value in mask
is True
.
output[a1...aA, i, b1...bB] = data[a1...aA, j, b1...bB]
Where
j
is thei
thTrue
entry ofmask[a1...aA]
.
Note that output
preserves the mask dimensions a1...aA
; this differs
from tf.boolean_mask
, which flattens those dimensions.
Returns | |
---|---|
A potentially ragged tensor that is formed by retaining the elements in
data where the corresponding value in mask is True .
|
Raises | |
---|---|
ValueError
|
if rank(mask) is not known statically; or if mask.shape is
not a prefix of data.shape .
|
Examples:
# Aliases for True & False so data and mask line up.
T, F = (True, False)
tf.ragged.boolean_mask( # Mask a 2D Tensor.
data=[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
mask=[[T, F, T], [F, F, F], [T, F, F]]).to_list()
[[1, 3], [], [7]]
tf.ragged.boolean_mask( # Mask a 2D RaggedTensor.
tf.ragged.constant([[1, 2, 3], [4], [5, 6]]),
tf.ragged.constant([[F, F, T], [F], [T, T]])).to_list()
[[3], [], [5, 6]]
tf.ragged.boolean_mask( # Mask rows of a 2D RaggedTensor.
tf.ragged.constant([[1, 2, 3], [4], [5, 6]]),
tf.ragged.constant([True, False, True])).to_list()
[[1, 2, 3], [5, 6]]