tf.keras.metrics.CategoricalCrossentropy

Computes the crossentropy metric between the labels and predictions.

Inherits From: MeanMetricWrapper, Mean, Metric

This is the crossentropy metric class to be used when there are multiple label classes (2 or more). It assumes that labels are one-hot encoded, e.g., when labels values are [2, 0, 1], then y_true is [[0, 0, 1], [1, 0, 0], [0, 1, 0]].

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.
from_logits (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.
label_smoothing (Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. label_smoothing=0.2 means that we will use a value of 0.1 for label "0" and 0.9 for label "1".
axis (Optional) Defaults to -1. The dimension along which entropy is computed.

Example:

Example:

# EPSILON = 1e-7, y = y_true, y` = y_pred
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
# xent = -sum(y * log(y'), axis = -1)
#      = -((log 0.95), (log 0.1))
#      = [0.051, 2.302]
# Reduced xent = (0.051 + 2.302) / 2
m = keras.metrics.CategoricalCrossentropy()
m.update_state([[0, 1, 0], [0, 0, 1]],
               [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
m.result()
1.1769392
m.reset_state()
m.update_state([[0, 1, 0], [0, 0, 1]],
               [[0.05, 0.95, 0], [0.1, 0.8, 0.1]],
               sample_weight=np.array([0.3, 0.7]))
m.result()
1.6271976

Usage with compile() API:

model.compile(
    optimizer='sgd',
    loss='mse',
    metrics=[keras.metrics.CategoricalCrossentropy()])

dtype

variables

Methods

add_variable

View source

add_weight

View source

from_config

View source

get_config

View source

Return the serializable config of the metric.

reset_state

View source

Reset all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Compute the current metric value.

Returns
A scalar tensor, or a dictionary of scalar tensors.

stateless_reset_state

View source

stateless_result

View source

stateless_update_state

View source

update_state

View source

Accumulate statistics for the metric.

__call__

View source

Call self as a function.