Pass this to embedding_column or indicator_column to convert sequence
categorical data into dense representation for input to sequence NN, such as
RNN.
Number of the elements in the vocabulary. This must be no
greater than length of vocabulary_file, if less than length, later
values are ignored. If None, it is set to the length of vocabulary_file.
num_oov_buckets
Non-negative integer, the number of out-of-vocabulary
buckets. All out-of-vocabulary inputs will be assigned IDs in the range
[vocabulary_size, vocabulary_size+num_oov_buckets) based on a hash of
the input value. A positive num_oov_buckets can not be specified with
default_value.
default_value
The integer ID value to return for out-of-vocabulary feature
values, defaults to -1. This can not be specified with a positive
num_oov_buckets.
dtype
The type of features. Only string and integer types are supported.
Returns
A SequenceCategoricalColumn.
Raises
ValueError
vocabulary_file is missing or cannot be opened.
ValueError
vocabulary_size is missing or < 1.
ValueError
num_oov_buckets is a negative integer.
ValueError
num_oov_buckets and default_value are both specified.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.feature_column.sequence_categorical_column_with_vocabulary_file\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/feature_column/sequence_feature_column.py#L199-L266) |\n\nA sequence of categorical terms where ids use a vocabulary file. (deprecated)\n| **Warning:** tf.feature_column is not recommended for new code. Instead, feature preprocessing can be done directly using either [Keras preprocessing\n| layers](https://www.tensorflow.org/guide/migrate/migrating_feature_columns) or through the one-stop utility [`tf.keras.utils.FeatureSpace`](https://www.tensorflow.org/api_docs/python/tf/keras/utils/FeatureSpace) built on top of them. See the [migration guide](https://tensorflow.org/guide/migrate) for details.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.feature_column.sequence_categorical_column_with_vocabulary_file`](https://www.tensorflow.org/api_docs/python/tf/feature_column/sequence_categorical_column_with_vocabulary_file)\n\n\u003cbr /\u003e\n\n tf.feature_column.sequence_categorical_column_with_vocabulary_file(\n key,\n vocabulary_file,\n vocabulary_size=None,\n num_oov_buckets=0,\n default_value=None,\n dtype=../../tf/dtypes#string\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use Keras preprocessing layers instead, either directly or via the [`tf.keras.utils.FeatureSpace`](../../tf/keras/utils/FeatureSpace) utility. Each of `tf.feature_column.*` has a functional equivalent in `tf.keras.layers` for feature preprocessing when training a Keras model.\n\nPass this to `embedding_column` or `indicator_column` to convert sequence\ncategorical data into dense representation for input to sequence NN, such as\nRNN.\n\n#### Example:\n\n states = sequence_categorical_column_with_vocabulary_file(\n key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,\n num_oov_buckets=5)\n states_embedding = embedding_column(states, dimension=10)\n columns = [states_embedding]\n\n features = tf.io.parse_example(..., features=make_parse_example_spec(columns))\n sequence_feature_layer = SequenceFeatures(columns)\n sequence_input, sequence_length = sequence_feature_layer(features)\n sequence_length_mask = tf.sequence_mask(sequence_length)\n\n rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)\n rnn_layer = tf.keras.layers.RNN(rnn_cell)\n outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `key` | A unique string identifying the input feature. |\n| `vocabulary_file` | The vocabulary file name. |\n| `vocabulary_size` | Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`. |\n| `num_oov_buckets` | Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. |\n| `default_value` | The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. |\n| `dtype` | The type of features. Only string and integer types are supported. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `SequenceCategoricalColumn`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-----------------------------------------------------------|\n| `ValueError` | `vocabulary_file` is missing or cannot be opened. |\n| `ValueError` | `vocabulary_size` is missing or \\\u003c 1. |\n| `ValueError` | `num_oov_buckets` is a negative integer. |\n| `ValueError` | `num_oov_buckets` and `default_value` are both specified. |\n| `ValueError` | `dtype` is neither string nor integer. |\n\n\u003cbr /\u003e"]]