Returns True if first argument is a typecode lower/equal in type hierarchy.
tf.experimental.numpy.issubdtype(
arg1, arg2
)
This is like the builtin :func:issubclass
, but for dtype
\ s.
Parameters
arg1, arg2 : dtype_like
dtype
or object coercible to one
Returns
out : bool
See Also
:ref:arrays.scalars
: Overview of the numpy type hierarchy.
issubsctype, issubclass_
Examples
issubdtype
can be used to check the type of arrays:
ints = np.array([1, 2, 3], dtype=np.int32)
np.issubdtype(ints.dtype, np.integer)
True
np.issubdtype(ints.dtype, np.floating)
False
floats = np.array([1, 2, 3], dtype=np.float32)
np.issubdtype(floats.dtype, np.integer)
False
np.issubdtype(floats.dtype, np.floating)
True
Similar types of different sizes are not subdtypes of each other:
np.issubdtype(np.float64, np.float32)
False
np.issubdtype(np.float32, np.float64)
False
but both are subtypes of floating
:
np.issubdtype(np.float64, np.floating)
True
np.issubdtype(np.float32, np.floating)
True
For convenience, dtype-like objects are allowed too:
np.issubdtype('S1', np.string_)
True
np.issubdtype('i4', np.signedinteger)
True