Splits a dataset into a left half and a right half (e.g. train / test).
tf.keras.utils.split_dataset(
dataset, left_size=None, right_size=None, shuffle=False, seed=None
)
Args |
dataset
|
A tf.data.Dataset , a torch.utils.data.Dataset object,
or a list/tuple of arrays with the same length.
|
left_size
|
If float (in the range [0, 1] ), it signifies
the fraction of the data to pack in the left dataset. If integer, it
signifies the number of samples to pack in the left dataset. If
None , defaults to the complement to right_size .
Defaults to None .
|
right_size
|
If float (in the range [0, 1] ), it signifies
the fraction of the data to pack in the right dataset.
If integer, it signifies the number of samples to pack
in the right dataset.
If None , defaults to the complement to left_size .
Defaults to None .
|
shuffle
|
Boolean, whether to shuffle the data before splitting it.
|
seed
|
A random seed for shuffling.
|
Example:
data = np.random.random(size=(1000, 4))
left_ds, right_ds = keras.utils.split_dataset(data, left_size=0.8)
int(left_ds.cardinality())
800
int(right_ds.cardinality())
200