View source on GitHub |
Leaky version of a Rectified Linear Unit activation layer.
Inherits From: Layer
, Operation
tf.keras.layers.LeakyReLU(
negative_slope=0.3, **kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
This layer allows a small gradient when the unit is not active.
Formula:
f(x) = alpha * x if x < 0
f(x) = x if x >= 0
Example:
leaky_relu_layer = LeakyReLU(negative_slope=0.5)
input = np.array([-10, -5, 0.0, 5, 10])
result = leaky_relu_layer(input)
# result = [-5. , -2.5, 0. , 5. , 10.]
Args | |
---|---|
negative_slope
|
Float >= 0.0. Negative slope coefficient.
Defaults to 0.3 .
|
**kwargs
|
Base layer keyword arguments, such as
name and dtype .
|
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)