View source on GitHub |
Computes the cosine similarity between y_true
& y_pred
.
Inherits From: Loss
tf.keras.losses.CosineSimilarity(
axis=-1,
reduction='sum_over_batch_size',
name='cosine_similarity'
)
Note that it is a number between -1 and 1. When it is a negative number
between -1 and 0, 0 indicates orthogonality and values closer to -1
indicate greater similarity. This makes it usable as a loss function in a
setting where you try to maximize the proximity between predictions and
targets. If either y_true
or y_pred
is a zero vector, cosine similarity
will be 0 regardless of the proximity between predictions and targets.
Formula:
loss = -sum(l2_norm(y_true) * l2_norm(y_pred))
Methods
call
call(
y_true, y_pred
)
from_config
@classmethod
from_config( config )
get_config
get_config()
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.