tf.keras.losses.CosineSimilarity

Computes the cosine similarity between y_true & y_pred.

Inherits From: Loss

Note that it is a number between -1 and 1. When it is a negative number between -1 and 0, 0 indicates orthogonality and values closer to -1 indicate greater similarity. This makes it usable as a loss function in a setting where you try to maximize the proximity between predictions and targets. If either y_true or y_pred is a zero vector, cosine similarity will be 0 regardless of the proximity between predictions and targets.

Formula:

loss = -sum(l2_norm(y_true) * l2_norm(y_pred))

axis The axis along which the cosine similarity is computed (the features axis). Defaults to -1.
reduction Type of reduction to apply to the loss. In almost all cases this should be "sum_over_batch_size". Supported options are "sum", "sum_over_batch_size" or None.
name Optional name for the loss instance.

Methods

call

View source

from_config

View source

get_config

View source

__call__

View source

Call self as a function.