tf.keras.metrics.MeanSquaredError

Computes the mean squared error between y_true and y_pred.

Inherits From: MeanMetricWrapper, Mean, Metric

Used in the notebooks

Used in the tutorials

Formula:

loss = mean(square(y_true - y_pred))

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Example:

m = keras.metrics.MeanSquaredError()
m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
m.result()
0.25

dtype

variables

Methods

add_variable

View source

add_weight

View source

from_config

View source

get_config

View source

Return the serializable config of the metric.

reset_state

View source

Reset all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Compute the current metric value.

Returns
A scalar tensor, or a dictionary of scalar tensors.

stateless_reset_state

View source

stateless_result

View source

stateless_update_state

View source

update_state

View source

Accumulate statistics for the metric.

__call__

View source

Call self as a function.