tf.compat.v1.glorot_normal_initializer

The Glorot normal initializer, also called Xavier normal initializer.

Inherits From: variance_scaling_initializer

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.

seed A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior.
dtype Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported.

Glorot et al., 2010 (pdf)

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary. It will typically be the output of get_config.

Returns
An Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.