View source on GitHub |
Computes R2 score.
Inherits From: Metric
tf.keras.metrics.R2Score(
class_aggregation='uniform_average',
num_regressors=0,
name='r2_score',
dtype=None
)
Formula:
sum_squares_residuals = sum((y_true - y_pred) ** 2)
sum_squares = sum((y_true - mean(y_true)) ** 2)
R2 = 1 - sum_squares_residuals / sum_squares
This is also called the coefficient of determination.
It indicates how close the fitted regression line is to ground-truth data.
- The highest score possible is 1.0. It indicates that the predictors perfectly accounts for variation in the target.
- A score of 0.0 indicates that the predictors do not account for variation in the target.
- It can also be negative if the model is worse than random.
This metric can also compute the "Adjusted R2" score.
Example:
y_true = np.array([[1], [4], [3]], dtype=np.float32)
y_pred = np.array([[2], [4], [4]], dtype=np.float32)
metric = keras.metrics.R2Score()
metric.update_state(y_true, y_pred)
result = metric.result()
result
0.57142854
Attributes | |
---|---|
dtype
|
|
variables
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethod
from_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates root mean squared error statistics.
Args | |
---|---|
y_true
|
The ground truth values. |
y_pred
|
The predicted values. |
sample_weight
|
Optional weighting of each example. Can
be a Tensor whose rank is either 0, or the same rank as
y_true , and must be broadcastable to y_true .
Defaults to 1 .
|
Returns | |
---|---|
Update op. |
__call__
__call__(
*args, **kwargs
)
Call self as a function.