View source on GitHub |
Adjust jpeg encoding quality of an image.
tf.image.adjust_jpeg_quality(
image, jpeg_quality, dct_method='', name=None
)
This is a convenience method that converts an image to uint8 representation,
encodes it to jpeg with jpeg_quality
, decodes it, and then converts back
to the original data type.
jpeg_quality
must be in the interval [0, 100]
.
Usage Examples:
x = [[[0.01, 0.02, 0.03],
[0.04, 0.05, 0.06]],
[[0.07, 0.08, 0.09],
[0.10, 0.11, 0.12]]]
x_jpeg = tf.image.adjust_jpeg_quality(x, 75)
x_jpeg.numpy()
array([[[0.00392157, 0.01960784, 0.03137255],
[0.02745098, 0.04313726, 0.05490196]],
[[0.05882353, 0.07450981, 0.08627451],
[0.08235294, 0.09803922, 0.10980393]]], dtype=float32)
Note that floating point values are expected to have values in the range [0,1) and values outside this range are clipped.
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
tf.image.adjust_jpeg_quality(x, 75)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.]]], dtype=float32)>
Note that jpeg_quality
100 is still lossy compression.
x = tf.constant([[[1, 2, 3],
[4, 5, 6]],
[[7, 8, 9],
[10, 11, 12]]], dtype=tf.uint8)
tf.image.adjust_jpeg_quality(x, 100)
<tf.Tensor: shape(2, 2, 3), dtype=uint8, numpy=
array([[[ 0, 1, 3],
[ 3, 4, 6]],
[[ 6, 7, 9],
[ 9, 10, 12]]], dtype=uint8)>
Returns | |
---|---|
Adjusted image, same shape and DType as image .
|
Raises | |
---|---|
InvalidArgumentError
|
quality must be in [0,100] |
InvalidArgumentError
|
image must have 1 or 3 channels |