View source on GitHub |
Compute the (weighted) sum of the given values.
Inherits From: Metric
tf.keras.metrics.Sum(
name='sum', dtype=None
)
For example, if values
is [1, 3, 5, 7]
then their sum is 16.
If sample_weight
was specified as [1, 1, 0, 0]
then the sum would be 4.
This metric creates one variable, total
.
This is ultimately returned as the sum value.
Args | |
---|---|
name
|
(Optional) string name of the metric instance. |
dtype
|
(Optional) data type of the metric result. |
Example:
m = metrics.Sum()
m.update_state([1, 3, 5, 7])
m.result()
16.0
m = metrics.Sum()
m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0])
m.result()
4.0
Attributes | |
---|---|
dtype
|
|
variables
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethod
from_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
values, sample_weight=None
)
Accumulate statistics for the metric.
__call__
__call__(
*args, **kwargs
)
Call self as a function.