View source on GitHub |
Evaluates the Einstein summation convention on the operands.
tf.keras.ops.einsum(
subscripts, *operands
)
Returns | |
---|---|
The calculation based on the Einstein summation convention. |
Example:
from keras.src import ops
a = ops.arange(25).reshape(5, 5)
b = ops.arange(5)
c = ops.arange(6).reshape(2, 3)
Trace of a matrix:
ops.einsum("ii", a)
60
ops.einsum(a, [0, 0])
60
ops.trace(a)
60
Extract the diagonal:
ops.einsum("ii -> i", a)
array([ 0, 6, 12, 18, 24])
ops.einsum(a, [0, 0], [0])
array([ 0, 6, 12, 18, 24])
ops.diag(a)
array([ 0, 6, 12, 18, 24])
Sum over an axis:
ops.einsum("ij -> i", a)
array([ 10, 35, 60, 85, 110])
ops.einsum(a, [0, 1], [0])
array([ 10, 35, 60, 85, 110])
ops.sum(a, axis=1)
array([ 10, 35, 60, 85, 110])
For higher dimensional tensors summing a single axis can be done with ellipsis:
ops.einsum("...j -> ...", a)
array([ 10, 35, 60, 85, 110])
np.einsum(a, [..., 1], [...])
array([ 10, 35, 60, 85, 110])
Compute a matrix transpose or reorder any number of axes:
ops.einsum("ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
ops.einsum("ij -> ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
ops.einsum(c, [1, 0])
array([[0, 3],
[1, 4],
[2, 5]])
ops.transpose(c)
array([[0, 3],
[1, 4],
[2, 5]])
Matrix vector multiplication:
ops.einsum("ij, j", a, b)
array([ 30, 80, 130, 180, 230])
ops.einsum(a, [0, 1], b, [1])
array([ 30, 80, 130, 180, 230])
ops.einsum("...j, j", a, b)
array([ 30, 80, 130, 180, 230])