tf.raw_ops.DeserializeSparse
Stay organized with collections
Save and categorize content based on your preferences.
Deserialize SparseTensor
objects.
tf.raw_ops.DeserializeSparse(
serialized_sparse, dtype, name=None
)
The input serialized_sparse
must have the shape [?, ?, ..., ?, 3]
where
the last dimension stores serialized SparseTensor
objects and the other N
dimensions (N >= 0) correspond to a batch. The ranks of the original
SparseTensor
objects must all match. When the final SparseTensor
is
created, its rank is the rank of the incoming SparseTensor
objects plus N;
the sparse tensors have been concatenated along new dimensions, one for each
batch.
The output SparseTensor
object's shape values for the original dimensions
are the max across the input SparseTensor
objects' shape values for the
corresponding dimensions. The new dimensions match the size of the batch.
The input SparseTensor
objects' indices are assumed ordered in
standard lexicographic order. If this is not the case, after this
step run SparseReorder
to restore index ordering.
For example, if the serialized input is a [2 x 3]
matrix representing two
original SparseTensor
objects:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
and
index = [ 2]
[10]
values = [4, 5]
shape = [30]
then the final deserialized SparseTensor
will be:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Args |
serialized_sparse
|
A Tensor . Must be one of the following types: string , variant .
The serialized SparseTensor objects. The last dimension
must have 3 columns.
|
dtype
|
A tf.DType . The dtype of the serialized SparseTensor objects.
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (sparse_indices, sparse_values, sparse_shape).
|
sparse_indices
|
A Tensor of type int64 .
|
sparse_values
|
A Tensor of type dtype .
|
sparse_shape
|
A Tensor of type int64 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.DeserializeSparse\n\n\u003cbr /\u003e\n\nDeserialize `SparseTensor` objects.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.DeserializeSparse`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DeserializeSparse)\n\n\u003cbr /\u003e\n\n tf.raw_ops.DeserializeSparse(\n serialized_sparse, dtype, name=None\n )\n\nThe input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where\nthe last dimension stores serialized `SparseTensor` objects and the other N\ndimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original\n`SparseTensor` objects must all match. When the final `SparseTensor` is\ncreated, its rank is the rank of the incoming `SparseTensor` objects plus N;\nthe sparse tensors have been concatenated along new dimensions, one for each\nbatch.\n\nThe output `SparseTensor` object's shape values for the original dimensions\nare the max across the input `SparseTensor` objects' shape values for the\ncorresponding dimensions. The new dimensions match the size of the batch.\n\nThe input `SparseTensor` objects' indices are assumed ordered in\nstandard lexicographic order. If this is not the case, after this\nstep run `SparseReorder` to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two\noriginal `SparseTensor` objects: \n\n index = [ 0]\n [10]\n [20]\n values = [1, 2, 3]\n shape = [50]\n\nand \n\n index = [ 2]\n [10]\n values = [4, 5]\n shape = [30]\n\nthen the final deserialized `SparseTensor` will be: \n\n index = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\n values = [1, 2, 3, 4, 5]\n shape = [2 50]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| `serialized_sparse` | A `Tensor`. Must be one of the following types: `string`, `variant`. The serialized `SparseTensor` objects. The last dimension must have 3 columns. |\n| `dtype` | A [`tf.DType`](../../tf/dtypes/DType). The `dtype` of the serialized `SparseTensor` objects. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|------------------|-----------------------------|\n| A tuple of `Tensor` objects (sparse_indices, sparse_values, sparse_shape). ||\n| `sparse_indices` | A `Tensor` of type `int64`. |\n| `sparse_values` | A `Tensor` of type `dtype`. |\n| `sparse_shape` | A `Tensor` of type `int64`. |\n\n\u003cbr /\u003e"]]