View source on GitHub |
Sigmoid activation function.
tf.keras.activations.sigmoid(
x
)
It is defined as: sigmoid(x) = 1 / (1 + exp(-x))
.
For small values (<-5),
sigmoid
returns a value close to zero, and for large values (>5)
the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element softmax, where the second element is assumed to be zero. The sigmoid function always returns a value between 0 and 1.
Args | |
---|---|
x
|
Input tensor. |