Computes the mean absolute error between labels and predictions.
tf.keras.losses.MAE(
y_true, y_pred
)
Used in the notebooks
loss = mean(abs(y_true - y_pred), axis=-1)
Args |
y_true
|
Ground truth values with shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values with shape = [batch_size, d0, .. dN] .
|
Returns |
Mean absolute error values with shape = [batch_size, d0, .. dN-1] .
|
Example:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = keras.losses.mean_absolute_error(y_true, y_pred)