View source on GitHub |
Computes best specificity where sensitivity is >= specified value.
Inherits From: Metric
tf.keras.metrics.SpecificityAtSensitivity(
sensitivity, num_thresholds=200, class_id=None, name=None, dtype=None
)
Sensitivity
measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn))
.
Specificity
measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp))
.
This metric creates four local variables, true_positives
,
true_negatives
, false_positives
and false_negatives
that are used to
compute the specificity at the given sensitivity. The threshold for the
given sensitivity value is computed and used to evaluate the corresponding
specificity.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
If class_id
is specified, we calculate precision by considering only the
entries in the batch for which class_id
is above the threshold
predictions, and computing the fraction of them for which class_id
is
indeed a correct label.
For additional information about specificity and sensitivity, see the following.
Example:
m = keras.metrics.SpecificityAtSensitivity(0.5)
m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
m.result()
0.66666667
m.reset_state()
m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
sample_weight=[1, 1, 2, 2, 2])
m.result()
0.5
Usage with compile()
API:
model.compile(
optimizer='sgd',
loss='binary_crossentropy',
metrics=[keras.metrics.SpecificityAtSensitivity()])
Attributes | |
---|---|
dtype
|
|
variables
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethod
from_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates confusion matrix statistics.
Args | |
---|---|
y_true
|
The ground truth values. |
y_pred
|
The predicted values. |
sample_weight
|
Optional weighting of each example. Defaults to 1 .
Can be a tensor whose rank is either 0, or the same rank as
y_true , and must be broadcastable to y_true .
|
__call__
__call__(
*args, **kwargs
)
Call self as a function.