public  final   class
      SparseApplyAdadelta
var: Should be from a Variable().
Nested Classes
| class | SparseApplyAdadelta.Options | Optional attributes for SparseApplyAdadelta | |
Constants
| String | OP_NAME | The name of this op, as known by TensorFlow core engine | 
Public Methods
| Output<T> | 
asOutput()
                
                   Returns the symbolic handle of the tensor. | 
| static <T extends TType> SparseApplyAdadelta<T> | |
| Output<T> | 
out()
                
                   Same as "var". | 
| static SparseApplyAdadelta.Options | 
useLocking(Boolean useLocking)
                
               | 
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value: 
                
                    "SparseApplyAdadelta"
                
            
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static SparseApplyAdadelta<T> create (Scope scope, Operand<T> var, Operand<T> accum, Operand<T> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, Operand<? extends TNumber> indices, Options... options)
Factory method to create a class wrapping a new SparseApplyAdadelta operation.
Parameters
| scope | current scope | 
|---|---|
| accum | Should be from a Variable(). | 
| accumUpdate | : Should be from a Variable(). | 
| lr | Learning rate. Must be a scalar. | 
| rho | Decay factor. Must be a scalar. | 
| epsilon | Constant factor. Must be a scalar. | 
| grad | The gradient. | 
| indices | A vector of indices into the first dimension of var and accum. | 
| options | carries optional attributes values | 
Returns
- a new instance of SparseApplyAdadelta
public static SparseApplyAdadelta.Options useLocking (Boolean useLocking)
Parameters
| useLocking | If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. | 
|---|