Update '*var' as FOBOS algorithm with fixed learning rate.
prox_v = var - alpha delta var = sign(prox_v)/(1+alphal2) max{|prox_v|-alphal1,0}
Nested Classes
| class | ApplyProximalGradientDescent.Options | Optional attributes for ApplyProximalGradientDescent
|
|
Constants
| String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
| Output<T> |
asOutput()
Returns the symbolic handle of the tensor.
|
| static <T extends TType> ApplyProximalGradientDescent<T> | |
| Output<T> |
out()
Same as "var".
|
| static ApplyProximalGradientDescent.Options |
useLocking(Boolean useLocking)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static ApplyProximalGradientDescent<T> create (Scope scope, Operand<T> var, Operand<T> alpha, Operand<T> l1, Operand<T> l2, Operand<T> delta, Options... options)
Factory method to create a class wrapping a new ApplyProximalGradientDescent operation.
Parameters
| scope | current scope |
|---|---|
| var | Should be from a Variable(). |
| alpha | Scaling factor. Must be a scalar. |
| l1 | L1 regularization. Must be a scalar. |
| l2 | L2 regularization. Must be a scalar. |
| delta | The change. |
| options | carries optional attributes values |
Returns
- a new instance of ApplyProximalGradientDescent
public static ApplyProximalGradientDescent.Options useLocking (Boolean useLocking)
Parameters
| useLocking | If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
|---|