Update '*var' according to the AddSign update.
m_t <- beta1 * m_{t-1} + (1 - beta1) * g update <- (alpha + sign_decay * sign(g) *sign(m)) * g variable <- variable - lr_t * update
Nested Classes
class | ApplyAddSign.Options | Optional attributes for ApplyAddSign
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
Output<T> |
asOutput()
Returns the symbolic handle of the tensor.
|
static <T extends TType> ApplyAddSign<T> | |
Output<T> |
out()
Same as "var".
|
static ApplyAddSign.Options |
useLocking(Boolean useLocking)
|
Inherited Methods
boolean |
equals(Object arg0)
|
final Class<?> |
getClass()
|
int |
hashCode()
|
final void |
notify()
|
final void |
notifyAll()
|
String |
toString()
|
final void |
wait(long arg0, int arg1)
|
final void |
wait(long arg0)
|
final void |
wait()
|
abstract ExecutionEnvironment |
env()
Return the execution environment this op was created in.
|
abstract Operation |
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static ApplyAddSign<T> create (Scope scope, Operand<T> var, Operand<T> m, Operand<T> lr, Operand<T> alpha, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, Options... options)
Factory method to create a class wrapping a new ApplyAddSign operation.
Parameters
scope | current scope |
---|---|
var | Should be from a Variable(). |
m | Should be from a Variable(). |
lr | Scaling factor. Must be a scalar. |
alpha | Must be a scalar. |
signDecay | Must be a scalar. |
beta | Must be a scalar. |
grad | The gradient. |
options | carries optional attributes values |
Returns
- a new instance of ApplyAddSign
public static ApplyAddSign.Options useLocking (Boolean useLocking)
Parameters
useLocking | If `True`, updating of the var and m tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
---|