TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Computes tf.sparse.maximum of elements across dimensions of a SparseTensor.
tf.sparse.reduce_max(
    sp_input, axis=None, keepdims=None, output_is_sparse=False, name=None
)
This is the reduction operation for the elementwise tf.sparse.maximum op.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_max().  In particular, this Op also returns a dense Tensor
if output_is_sparse is False, or a SparseTensor if output_is_sparse
is True.
Reduces sp_input along the dimensions given in axis.  Unless
keepdims is true, the rank of the tensor is reduced by 1 for each entry in
axis. If keepdims is true, the reduced dimensions are retained
with length 1.
If axis has no entries, all dimensions are reduced, and a tensor
with a single element is returned.  Additionally, the axes can be negative,
similar to the indexing rules in Python.
The values not defined in sp_input don't participate in the reduce max,
as opposed to be implicitly assumed 0 -- hence it can return negative values
for sparse axis. But, in case there are no values in
axis, it will reduce to 0. See second example below.
For example:
'x' represents [[1, ?, 2]
[?, 3, ?]]
where ? is implicitly-zero.
x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 2, 3], [2, 3])tf.sparse.reduce_max(x)<tf.Tensor: shape=(), dtype=int32, numpy=3>tf.sparse.reduce_max(x, 0)<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 2], dtype=int32)>tf.sparse.reduce_max(x, 1)<tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3], dtype=int32)>tf.sparse.reduce_max(x, 1, keepdims=True)<tf.Tensor: shape=(2, 1), dtype=int32, numpy=array([[2],[3]], dtype=int32)>tf.sparse.reduce_max(x, [0, 1])<tf.Tensor: shape=(), dtype=int32, numpy=3>
'y' represents [[-7, ?]
[ 4, 3]
[ ?, ?]
y = tf.sparse.SparseTensor([[0, 0,], [1, 0], [1, 1]], [-7, 4, 3],[3, 2])tf.sparse.reduce_max(y, 1)<tf.Tensor: shape=(3,), dtype=int32, numpy=array([-7, 4, 0], dtype=int32)>
Args | |
|---|---|
sp_input
 | 
The SparseTensor to reduce. Should have numeric type. | 
axis
 | 
The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.
 | 
keepdims
 | 
If true, retain reduced dimensions with length 1. | 
output_is_sparse
 | 
If true, returns a SparseTensor instead of a dense
Tensor (the default).
 | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
The reduced Tensor or the reduced SparseTensor if output_is_sparse is
True.
 | 
  TensorFlow 1 version
    View source on GitHub