Computes gradient of the FractionalMaxPool function.
tf.raw_ops.FractionalMaxPoolGrad(
    orig_input, orig_output, out_backprop, row_pooling_sequence,
    col_pooling_sequence, overlapping=False, name=None
)
Args | |
|---|---|
orig_input
 | 
A Tensor. Must be one of the following types: float32, float64, int32, int64.
Original input for fractional_max_pool
 | 
orig_output
 | 
A Tensor. Must have the same type as orig_input.
Original output for fractional_max_pool
 | 
out_backprop
 | 
A Tensor. Must have the same type as orig_input.
4-D with shape [batch, height, width, channels].  Gradients
w.r.t. the output of fractional_max_pool.
 | 
row_pooling_sequence
 | 
A Tensor of type int64.
row pooling sequence, form pooling region with
col_pooling_sequence.
 | 
col_pooling_sequence
 | 
A Tensor of type int64.
column pooling sequence, form pooling region with
row_pooling sequence.
 | 
overlapping
 | 
An optional bool. Defaults to False.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:
 
 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [20, 16] for fractional max pooling.  | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
A Tensor. Has the same type as orig_input.
 |