Initializer capable of adapting its scale to the shape of weights tensors.
tf.compat.v1.keras.initializers.VarianceScaling(
    scale=1.0, mode='fan_in', distribution='truncated_normal',
    seed=None, dtype=tf.dtypes.float32
)
With distribution="truncated_normal" or "untruncated_normal",
samples are drawn from a truncated/untruncated normal
distribution with a mean of zero and a standard deviation (after truncation,
if used) stddev = sqrt(scale / n)
where n is:
- number of input units in the weight tensor, if mode = "fan_in"
 
- number of output units, if mode = "fan_out"
 
- average of the numbers of input and output units, if mode = "fan_avg"
 
With distribution="uniform", samples are drawn from a uniform distribution
within [-limit, limit], with limit = sqrt(3 * scale / n).
Args | 
scale
 | 
Scaling factor (positive float).
 | 
mode
 | 
One of "fan_in", "fan_out", "fan_avg".
 | 
distribution
 | 
Random distribution to use. One of "normal", "uniform".
 | 
seed
 | 
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
 | 
dtype
 | 
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
 | 
Raises | 
ValueError
 | 
In case of an invalid value for the "scale", mode" or
"distribution" arguments.
 | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
config
 | 
A Python dictionary. It will typically be the output of
get_config.
 | 
| Returns | 
| 
An Initializer instance.
 | 
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | 
| 
A JSON-serializable Python dict.
 | 
__call__
View source
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | 
shape
 | 
Shape of the tensor.
 | 
dtype
 | 
Optional dtype of the tensor. If not provided use the initializer
dtype.
 | 
partition_info
 | 
Optional information about the possible partitioning of a
tensor.
 |