TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Generates hashed sparse cross from a list of sparse and dense tensors.
tf.sparse.cross_hashed(
    inputs, num_buckets=0, hash_key=None, name=None
)
For example, if the inputs are
* inputs[0]: SparseTensor with shape = [2, 2]
  [0, 0]: "a"
  [1, 0]: "b"
  [1, 1]: "c"
* inputs[1]: SparseTensor with shape = [2, 1]
  [0, 0]: "d"
  [1, 0]: "e"
* inputs[2]: Tensor [["f"], ["g"]]
then the output will be:
shape = [2, 2]
[0, 0]: FingerprintCat64(
            Fingerprint64("f"), FingerprintCat64(
                Fingerprint64("d"), Fingerprint64("a")))
[1, 0]: FingerprintCat64(
            Fingerprint64("g"), FingerprintCat64(
                Fingerprint64("e"), Fingerprint64("b")))
[1, 1]: FingerprintCat64(
            Fingerprint64("g"), FingerprintCat64(
                Fingerprint64("e"), Fingerprint64("c")))
Args | |
|---|---|
inputs
 | 
An iterable of Tensor or SparseTensor.
 | 
num_buckets
 | 
An int that is >= 0.
output = hashed_value%num_buckets if num_buckets > 0 else hashed_value.
 | 
hash_key
 | 
Integer hash_key that will be used by the FingerprintCat64
function. If not given, will use a default key.
 | 
name
 | 
Optional name for the op. | 
Returns | |
|---|---|
A SparseTensor of type int64.
 | 
  TensorFlow 1 version
    View source on GitHub