TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Optimizer that implements the NAdam algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Nadam(
    learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07,
    name='Nadam', **kwargs
)
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum.
Args | |
|---|---|
learning_rate
 | 
A Tensor or a floating point value. The learning rate. | 
beta_1
 | 
A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. | 
beta_2
 | 
A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. | 
epsilon
 | 
A small constant for numerical stability. | 
name
 | 
Optional name for the operations created when applying gradients.
Defaults to "Nadam".
 | 
**kwargs
 | 
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue".
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
 | 
Usage Example:
opt = tf.keras.optimizers.Nadam(learning_rate=0.2)var1 = tf.Variable(10.0)loss = lambda: (var1 ** 2) / 2.0step_count = opt.minimize(loss, [var1]).numpy()"{:.1f}".format(var1.numpy())9.8
Reference:
Raises | |
|---|---|
ValueError
 | 
in case of any invalid argument. | 
  TensorFlow 1 version
    View source on GitHub