View source on GitHub
  
 | 
Adjust the hue of RGB images by a random factor deterministically.
tf.image.stateless_random_hue(
    image, max_delta, seed
)
Equivalent to adjust_hue() but uses a delta randomly picked in the
interval [-max_delta, max_delta).
Guarantees the same results given the same seed independent of how many
times the function is called, and independent of global seed settings (e.g.
tf.random.set_seed).
max_delta must be in the interval [0, 0.5].
Usage Example:
x = [[[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]],[[7.0, 8.0, 9.0],[10.0, 11.0, 12.0]]]seed = (1, 2)tf.image.stateless_random_hue(x, 0.2, seed)<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=array([[[ 1.6514902, 1. , 3. ],[ 4.65149 , 4. , 6. ]],[[ 7.65149 , 7. , 9. ],[10.65149 , 10. , 12. ]]], dtype=float32)>
Args | |
|---|---|
image
 | 
RGB image or images. The size of the last dimension must be 3. | 
max_delta
 | 
float. The maximum value for the random delta. | 
seed
 | 
A shape [2] Tensor, the seed to the random number generator. Must have
dtype int32 or int64. (When using XLA, only int32 is allowed.)
 | 
Returns | |
|---|---|
Adjusted image(s), same shape and DType as image.
 | 
Raises | |
|---|---|
ValueError
 | 
if max_delta is invalid.
 | 
    View source on GitHub