Resize quantized images to size using quantized bilinear interpolation.
tf.raw_ops.QuantizedResizeBilinear(
    images, size, min, max, align_corners=False, half_pixel_centers=False, name=None
)
Input images and output images must be quantized types.
Args | |
|---|---|
images
 | 
A Tensor. Must be one of the following types: quint8, qint32, float32.
4-D with shape [batch, height, width, channels].
 | 
size
 | 
A 1-D int32 Tensor of 2 elements: new_height, new_width.  The
new size for the images.
 | 
min
 | 
A Tensor of type float32.
 | 
max
 | 
A Tensor of type float32.
 | 
align_corners
 | 
An optional bool. Defaults to False.
If true, the centers of the 4 corner pixels of the input and output tensors are
aligned, preserving the values at the corner pixels. Defaults to false.
 | 
half_pixel_centers
 | 
An optional bool. Defaults to False.
 | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
A tuple of Tensor objects (resized_images, out_min, out_max).
 | 
|
resized_images
 | 
A Tensor. Has the same type as images.
 | 
out_min
 | 
A Tensor of type float32.
 | 
out_max
 | 
A Tensor of type float32.
 |