tf.keras.metrics.CategoricalCrossentropy
Stay organized with collections
Save and categorize content based on your preferences.
Computes the crossentropy metric between the labels and predictions.
tf.keras.metrics.CategoricalCrossentropy(
name='categorical_crossentropy', dtype=None, from_logits=False,
label_smoothing=0
)
This is the crossentropy metric class to be used when there are multiple
label classes (2 or more). Here we assume that labels are given as a one_hot
representation. eg., When labels values are [2, 0, 1],
y_true
= [[0, 0, 1], [1, 0, 0], [0, 1, 0]].
Usage:
m = tf.keras.metrics.CategoricalCrossentropy()
m.update_state([[0, 1, 0], [0, 0, 1]],
[[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
# EPSILON = 1e-7, y = y_true, y` = y_pred
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]
# xent = -sum(y * log(y'), axis = -1)
# = -((log 0.95), (log 0.1))
# = [0.051, 2.302]
# Reduced xent = (0.051 + 2.302) / 2
print('Final result: ', m.result().numpy()) # Final result: 1.176
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile(
'sgd',
loss='mse',
metrics=[tf.keras.metrics.CategoricalCrossentropy()])
Args |
name
|
(Optional) string name of the metric instance.
|
dtype
|
(Optional) data type of the metric result.
|
from_logits
|
(Optional ) Whether y_pred is expected to be a logits tensor.
By default, we assume that y_pred encodes a probability distribution.
|
label_smoothing
|
Float in [0, 1]. When > 0, label values are smoothed,
meaning the confidence on label values are relaxed. e.g.
label_smoothing=0.2 means that we will use a value of 0.1 for label
0 and 0.9 for label 1 "
|
Args |
fn
|
The metric function to wrap, with signature
fn(y_true, y_pred, **kwargs) .
|
name
|
(Optional) string name of the metric instance.
|
dtype
|
(Optional) data type of the metric result.
|
**kwargs
|
The keyword arguments that are passed on to fn .
|
Methods
reset_states
View source
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps,
when a metric is evaluated during training.
result
View source
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the
metric value using the state variables.
update_state
View source
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true
and y_pred
should have the same shape.
Args |
y_true
|
The ground truth values.
|
y_pred
|
The predicted values.
|
sample_weight
|
Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true ,
and must be broadcastable to y_true .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.metrics.CategoricalCrossentropy\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/metrics/CategoricalCrossentropy) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L2556-L2615) |\n\nComputes the crossentropy metric between the labels and predictions.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.metrics.CategoricalCrossentropy`](/api_docs/python/tf/keras/metrics/CategoricalCrossentropy)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.metrics.CategoricalCrossentropy`](/api_docs/python/tf/keras/metrics/CategoricalCrossentropy)\n\n\u003cbr /\u003e\n\n tf.keras.metrics.CategoricalCrossentropy(\n name='categorical_crossentropy', dtype=None, from_logits=False,\n label_smoothing=0\n )\n\nThis is the crossentropy metric class to be used when there are multiple\nlabel classes (2 or more). Here we assume that labels are given as a `one_hot`\nrepresentation. eg., When labels values are \\[2, 0, 1\\],\n`y_true` = \\[\\[0, 0, 1\\], \\[1, 0, 0\\], \\[0, 1, 0\\]\\].\n\n#### Usage:\n\n m = tf.keras.metrics.CategoricalCrossentropy()\n m.update_state([[0, 1, 0], [0, 0, 1]],\n [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])\n\n # EPSILON = 1e-7, y = y_true, y` = y_pred\n # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)\n # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]\n\n # xent = -sum(y * log(y'), axis = -1)\n # = -((log 0.95), (log 0.1))\n # = [0.051, 2.302]\n # Reduced xent = (0.051 + 2.302) / 2\n\n print('Final result: ', m.result().numpy()) # Final result: 1.176\n\nUsage with tf.keras API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile(\n 'sgd',\n loss='mse',\n metrics=[tf.keras.metrics.CategoricalCrossentropy()])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `name` | (Optional) string name of the metric instance. |\n| `dtype` | (Optional) data type of the metric result. |\n| `from_logits` | (Optional ) Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution. |\n| `label_smoothing` | Float in \\[0, 1\\]. When \\\u003e 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. `label_smoothing=0.2` means that we will use a value of `0.1` for label `0` and `0.9` for label `1`\" |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|-----------------------------------------------------------------------------|\n| `fn` | The metric function to wrap, with signature `fn(y_true, y_pred, **kwargs)`. |\n| `name` | (Optional) string name of the metric instance. |\n| `dtype` | (Optional) data type of the metric result. |\n| `**kwargs` | The keyword arguments that are passed on to `fn`. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `reset_states`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L203-L209) \n\n reset_states()\n\nResets all of the metric state variables.\n\nThis function is called between epochs/steps,\nwhen a metric is evaluated during training.\n\n### `result`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L361-L371) \n\n result()\n\nComputes and returns the metric value tensor.\n\nResult computation is an idempotent operation that simply calculates the\nmetric value using the state variables.\n\n### `update_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L558-L583) \n\n update_state(\n y_true, y_pred, sample_weight=None\n )\n\nAccumulates metric statistics.\n\n`y_true` and `y_pred` should have the same shape.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | The ground truth values. |\n| `y_pred` | The predicted values. |\n| `sample_weight` | Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Update op. ||\n\n\u003cbr /\u003e"]]