The compilation is a hint and only supported on a best-effort basis.
Example usage:
with tf.xla.experimental.jit_scope():
c = tf.matmul(a, b) # compiled
with tf.xla.experimental.jit_scope(compile_ops=False):
d = tf.matmul(a, c) # not compiled
with tf.xla.experimental.jit_scope(
compile_ops=lambda node_def: 'matmul' in node_def.op.lower()):
e = tf.matmul(a, b) + d # matmul is compiled, the addition is not.
Example of separate_compiled_gradients:
# In the example below, the computations for f, g and h will all be compiled
# in separate scopes.
with tf.xla.experimental.jit_scope(
separate_compiled_gradients=True):
f = tf.matmul(a, b)
g = tf.gradients([f], [a, b], name='mygrads1')
h = tf.gradients([f], [a, b], name='mygrads2')
Args
compile_ops
Whether to enable or disable compilation in the scope.
Either a Python bool, or a callable that accepts the parameter
node_def and returns a python bool.
separate_compiled_gradients
If true put each gradient subgraph into a
separate compilation scope. This gives fine-grained control over which
portions of the graph will be compiled as a single unit. Compiling
gradients separately may yield better performance for some graphs.
The scope is named based on the scope of the forward computation as well
as the name of the gradients. As a result, the gradients will be compiled
in a scope that is separate from both the forward computation, and from
other gradients.
Raises
RuntimeError
if called when eager execution is enabled.
Yields:
The current scope, enabling or disabling compilation.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.xla.experimental.jit_scope\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/xla/experimental/jit_scope) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/compiler/xla/jit.py#L40-L126) |\n\nEnable or disable JIT compilation of operators within the scope.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.xla.experimental.jit_scope`](/api_docs/python/tf/xla/experimental/jit_scope)\n\n\u003cbr /\u003e\n\n @contextlib.contextmanager\n tf.xla.experimental.jit_scope(\n compile_ops=True, separate_compiled_gradients=False\n )\n\n| **Note:** This is an experimental feature.\n\nThe compilation is a hint and only supported on a best-effort basis.\n\n#### Example usage:\n\nwith tf.xla.experimental.jit_scope():\nc = tf.matmul(a, b) # compiled\nwith tf.xla.experimental.jit_scope(compile_ops=False):\nd = tf.matmul(a, c) # not compiled\nwith tf.xla.experimental.jit_scope(\ncompile_ops=lambda node_def: 'matmul' in node_def.op.lower()):\ne = tf.matmul(a, b) + d # matmul is compiled, the addition is not.\n\nExample of separate_compiled_gradients:\n# In the example below, the computations for f, g and h will all be compiled\n# in separate scopes.\nwith tf.xla.experimental.jit_scope(\nseparate_compiled_gradients=True):\nf = tf.matmul(a, b)\ng = tf.gradients(\\[f\\], \\[a, b\\], name='mygrads1')\nh = tf.gradients(\\[f\\], \\[a, b\\], name='mygrads2')\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `compile_ops` | Whether to enable or disable compilation in the scope. Either a Python bool, or a callable that accepts the parameter `node_def` and returns a python bool. |\n| `separate_compiled_gradients` | If true put each gradient subgraph into a separate compilation scope. This gives fine-grained control over which portions of the graph will be compiled as a single unit. Compiling gradients separately may yield better performance for some graphs. The scope is named based on the scope of the forward computation as well as the name of the gradients. As a result, the gradients will be compiled in a scope that is separate from both the forward computation, and from other gradients. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|--------------------------------------------|\n| `RuntimeError` | if called when eager execution is enabled. |\n\n\u003cbr /\u003e\n\n#### Yields:\n\nThe current scope, enabling or disabling compilation."]]