tf.random.log_uniform_candidate_sampler
Stay organized with collections
Save and categorize content based on your preferences.
Samples a set of classes using a log-uniform (Zipfian) base distribution.
tf.random.log_uniform_candidate_sampler(
true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None
)
This operation randomly samples a tensor of sampled classes
(sampled_candidates
) from the range of integers [0, range_max)
.
The elements of sampled_candidates
are drawn without replacement
(if unique=True
) or with replacement (if unique=False
) from
the base distribution.
The base distribution for this operation is an approximately log-uniform
or Zipfian distribution:
P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)
This sampler is useful when the target classes approximately follow such
a distribution - for example, if the classes represent words in a lexicon
sorted in decreasing order of frequency. If your classes are not ordered by
decreasing frequency, do not use this op.
In addition, this operation returns tensors true_expected_count
and sampled_expected_count
representing the number of times each
of the target classes (true_classes
) and the sampled
classes (sampled_candidates
) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document.
If unique=True
, then these are post-rejection probabilities and we
compute them approximately.
Args |
true_classes
|
A Tensor of type int64 and shape [batch_size,
num_true] . The target classes.
|
num_true
|
An int . The number of target classes per training example.
|
num_sampled
|
An int . The number of classes to randomly sample.
|
unique
|
A bool . Determines whether all sampled classes in a batch are
unique.
|
range_max
|
An int . The number of possible classes.
|
seed
|
An int . An operation-specific seed. Default is 0.
|
name
|
A name for the operation (optional).
|
Returns |
sampled_candidates
|
A tensor of type int64 and shape [num_sampled] .
The sampled classes.
|
true_expected_count
|
A tensor of type float . Same shape as
true_classes . The expected counts under the sampling distribution
of each of true_classes .
|
sampled_expected_count
|
A tensor of type float . Same shape as
sampled_candidates . The expected counts under the sampling distribution
of each of sampled_candidates .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.random.log_uniform_candidate_sampler\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/random/log_uniform_candidate_sampler) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/ops/candidate_sampling_ops.py#L89-L151) |\n\nSamples a set of classes using a log-uniform (Zipfian) base distribution.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.nn.log_uniform_candidate_sampler`](/api_docs/python/tf/random/log_uniform_candidate_sampler), [`tf.compat.v1.random.log_uniform_candidate_sampler`](/api_docs/python/tf/random/log_uniform_candidate_sampler)\n\n\u003cbr /\u003e\n\n tf.random.log_uniform_candidate_sampler(\n true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None\n )\n\nThis operation randomly samples a tensor of sampled classes\n(`sampled_candidates`) from the range of integers `[0, range_max)`.\n\nThe elements of `sampled_candidates` are drawn without replacement\n(if `unique=True`) or with replacement (if `unique=False`) from\nthe base distribution.\n\nThe base distribution for this operation is an approximately log-uniform\nor Zipfian distribution:\n\n`P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)`\n\nThis sampler is useful when the target classes approximately follow such\na distribution - for example, if the classes represent words in a lexicon\nsorted in decreasing order of frequency. If your classes are not ordered by\ndecreasing frequency, do not use this op.\n\nIn addition, this operation returns tensors `true_expected_count`\nand `sampled_expected_count` representing the number of times each\nof the target classes (`true_classes`) and the sampled\nclasses (`sampled_candidates`) is expected to occur in an average\ntensor of sampled classes. These values correspond to `Q(y|x)`\ndefined in [this\ndocument](http://www.tensorflow.org/extras/candidate_sampling.pdf).\nIf `unique=True`, then these are post-rejection probabilities and we\ncompute them approximately.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|------------------------------------------------------------------------------------|\n| `true_classes` | A `Tensor` of type `int64` and shape `[batch_size, num_true]`. The target classes. |\n| `num_true` | An `int`. The number of target classes per training example. |\n| `num_sampled` | An `int`. The number of classes to randomly sample. |\n| `unique` | A `bool`. Determines whether all sampled classes in a batch are unique. |\n| `range_max` | An `int`. The number of possible classes. |\n| `seed` | An `int`. An operation-specific seed. Default is 0. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n| `sampled_candidates` | A tensor of type `int64` and shape `[num_sampled]`. The sampled classes. |\n| `true_expected_count` | A tensor of type `float`. Same shape as `true_classes`. The expected counts under the sampling distribution of each of `true_classes`. |\n| `sampled_expected_count` | A tensor of type `float`. Same shape as `sampled_candidates`. The expected counts under the sampling distribution of each of `sampled_candidates`. |\n\n\u003cbr /\u003e"]]