[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# Module: tf.compat.v1.losses\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/compat/v1/losses) |\n\nLoss operations for use in neural networks.\n| **Note:** All the losses are added to the `GraphKeys.LOSSES` collection by default.\n\nClasses\n-------\n\n[`class Reduction`](../../../tf/compat/v1/losses/Reduction): Types of loss reduction.\n\nFunctions\n---------\n\n[`absolute_difference(...)`](../../../tf/compat/v1/losses/absolute_difference): Adds an Absolute Difference loss to the training procedure.\n\n[`add_loss(...)`](../../../tf/compat/v1/losses/add_loss): Adds a externally defined loss to the collection of losses.\n\n[`compute_weighted_loss(...)`](../../../tf/compat/v1/losses/compute_weighted_loss): Computes the weighted loss.\n\n[`cosine_distance(...)`](../../../tf/compat/v1/losses/cosine_distance): Adds a cosine-distance loss to the training procedure. (deprecated arguments)\n\n[`get_losses(...)`](../../../tf/compat/v1/losses/get_losses): Gets the list of losses from the loss_collection.\n\n[`get_regularization_loss(...)`](../../../tf/compat/v1/losses/get_regularization_loss): Gets the total regularization loss.\n\n[`get_regularization_losses(...)`](../../../tf/compat/v1/losses/get_regularization_losses): Gets the list of regularization losses.\n\n[`get_total_loss(...)`](../../../tf/compat/v1/losses/get_total_loss): Returns a tensor whose value represents the total loss.\n\n[`hinge_loss(...)`](../../../tf/compat/v1/losses/hinge_loss): Adds a hinge loss to the training procedure.\n\n[`huber_loss(...)`](../../../tf/compat/v1/losses/huber_loss): Adds a Huber Loss term to the training procedure.\n\n[`log_loss(...)`](../../../tf/compat/v1/losses/log_loss): Adds a Log Loss term to the training procedure.\n\n[`mean_pairwise_squared_error(...)`](../../../tf/compat/v1/losses/mean_pairwise_squared_error): Adds a pairwise-errors-squared loss to the training procedure.\n\n[`mean_squared_error(...)`](../../../tf/compat/v1/losses/mean_squared_error): Adds a Sum-of-Squares loss to the training procedure.\n\n[`sigmoid_cross_entropy(...)`](../../../tf/compat/v1/losses/sigmoid_cross_entropy): Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.\n\n[`softmax_cross_entropy(...)`](../../../tf/compat/v1/losses/softmax_cross_entropy): Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits_v2.\n\n[`sparse_softmax_cross_entropy(...)`](../../../tf/compat/v1/losses/sparse_softmax_cross_entropy): Cross-entropy loss using [`tf.nn.sparse_softmax_cross_entropy_with_logits`](../../../tf/nn/sparse_softmax_cross_entropy_with_logits)."]]