Module: tf.feature_column
Stay organized with collections
Save and categorize content based on your preferences.
Public API for tf.feature_column namespace.
Functions
bucketized_column(...)
: Represents discretized dense input.
categorical_column_with_hash_bucket(...)
: Represents sparse feature where ids are set by hashing.
categorical_column_with_identity(...)
: A CategoricalColumn
that returns identity values.
categorical_column_with_vocabulary_file(...)
: A CategoricalColumn
with a vocabulary file.
categorical_column_with_vocabulary_list(...)
: A CategoricalColumn
with in-memory vocabulary.
crossed_column(...)
: Returns a column for performing crosses of categorical features.
embedding_column(...)
: DenseColumn
that converts from sparse, categorical input.
indicator_column(...)
: Represents multi-hot representation of given categorical column.
make_parse_example_spec(...)
: Creates parsing spec dictionary from input feature_columns.
numeric_column(...)
: Represents real valued or numerical features.
sequence_categorical_column_with_hash_bucket(...)
: A sequence of categorical terms where ids are set by hashing.
sequence_categorical_column_with_identity(...)
: Returns a feature column that represents sequences of integers.
sequence_categorical_column_with_vocabulary_file(...)
: A sequence of categorical terms where ids use a vocabulary file.
sequence_categorical_column_with_vocabulary_list(...)
: A sequence of categorical terms where ids use an in-memory list.
sequence_numeric_column(...)
: Returns a feature column that represents sequences of numeric data.
shared_embeddings(...)
: List of dense columns that convert from sparse, categorical input.
weighted_categorical_column(...)
: Applies weight values to a CategoricalColumn
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# Module: tf.feature_column\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/feature_column) |\n\nPublic API for tf.feature_column namespace.\n\nFunctions\n---------\n\n[`bucketized_column(...)`](../tf/feature_column/bucketized_column): Represents discretized dense input.\n\n[`categorical_column_with_hash_bucket(...)`](../tf/feature_column/categorical_column_with_hash_bucket): Represents sparse feature where ids are set by hashing.\n\n[`categorical_column_with_identity(...)`](../tf/feature_column/categorical_column_with_identity): A `CategoricalColumn` that returns identity values.\n\n[`categorical_column_with_vocabulary_file(...)`](../tf/feature_column/categorical_column_with_vocabulary_file): A `CategoricalColumn` with a vocabulary file.\n\n[`categorical_column_with_vocabulary_list(...)`](../tf/feature_column/categorical_column_with_vocabulary_list): A `CategoricalColumn` with in-memory vocabulary.\n\n[`crossed_column(...)`](../tf/feature_column/crossed_column): Returns a column for performing crosses of categorical features.\n\n[`embedding_column(...)`](../tf/feature_column/embedding_column): `DenseColumn` that converts from sparse, categorical input.\n\n[`indicator_column(...)`](../tf/feature_column/indicator_column): Represents multi-hot representation of given categorical column.\n\n[`make_parse_example_spec(...)`](../tf/feature_column/make_parse_example_spec): Creates parsing spec dictionary from input feature_columns.\n\n[`numeric_column(...)`](../tf/feature_column/numeric_column): Represents real valued or numerical features.\n\n[`sequence_categorical_column_with_hash_bucket(...)`](../tf/feature_column/sequence_categorical_column_with_hash_bucket): A sequence of categorical terms where ids are set by hashing.\n\n[`sequence_categorical_column_with_identity(...)`](../tf/feature_column/sequence_categorical_column_with_identity): Returns a feature column that represents sequences of integers.\n\n[`sequence_categorical_column_with_vocabulary_file(...)`](../tf/feature_column/sequence_categorical_column_with_vocabulary_file): A sequence of categorical terms where ids use a vocabulary file.\n\n[`sequence_categorical_column_with_vocabulary_list(...)`](../tf/feature_column/sequence_categorical_column_with_vocabulary_list): A sequence of categorical terms where ids use an in-memory list.\n\n[`sequence_numeric_column(...)`](../tf/feature_column/sequence_numeric_column): Returns a feature column that represents sequences of numeric data.\n\n[`shared_embeddings(...)`](../tf/feature_column/shared_embeddings): List of dense columns that convert from sparse, categorical input.\n\n[`weighted_categorical_column(...)`](../tf/feature_column/weighted_categorical_column): Applies weight values to a `CategoricalColumn`."]]