tf.distribute.cluster_resolver.KubernetesClusterResolver
Stay organized with collections
Save and categorize content based on your preferences.
ClusterResolver for Kubernetes.
Inherits From: ClusterResolver
tf.distribute.cluster_resolver.KubernetesClusterResolver(
job_to_label_mapping=None, tf_server_port=8470, rpc_layer='grpc',
override_client=None
)
This is an implementation of cluster resolvers for Kubernetes. When given the
the Kubernetes namespace and label selector for pods, we will retrieve the
pod IP addresses of all running pods matching the selector, and return a
ClusterSpec based on that information.
Args |
job_to_label_mapping
|
A mapping of TensorFlow jobs to label selectors.
This allows users to specify many TensorFlow jobs in one Cluster
Resolver, and each job can have pods belong with different label
selectors. For example, a sample mapping might be
{'worker': ['job-name=worker-cluster-a', 'job-name=worker-cluster-b'],
'ps': ['job-name=ps-1', 'job-name=ps-2']}
|
tf_server_port
|
The port the TensorFlow server is listening on.
|
rpc_layer
|
(Optional) The RPC layer TensorFlow should use to communicate
between tasks in Kubernetes. Defaults to 'grpc'.
|
override_client
|
The Kubernetes client (usually automatically retrieved
using from kubernetes import client as k8sclient ). If you pass this
in, you are responsible for setting Kubernetes credentials manually.
|
Raises |
ImportError
|
If the Kubernetes Python client is not installed and no
override_client is passed in.
|
RuntimeError
|
If autoresolve_task is not a boolean or a callable.
|
Attributes |
environment
|
Returns the current environment which TensorFlow is running in.
There are two possible return values, "google" (when TensorFlow is running
in a Google-internal environment) or an empty string (when TensorFlow is
running elsewhere).
If you are implementing a ClusterResolver that works in both the Google
environment and the open-source world (for instance, a TPU ClusterResolver
or similar), you will have to return the appropriate string depending on the
environment, which you will have to detect.
Otherwise, if you are implementing a ClusterResolver that will only work
in open-source TensorFlow, you do not need to implement this property.
|
Methods
cluster_spec
View source
cluster_spec()
Returns a ClusterSpec object based on the latest info from Kubernetes.
We retrieve the information from the Kubernetes master every time this
method is called.
Returns |
A ClusterSpec containing host information returned from Kubernetes.
|
Raises |
RuntimeError
|
If any of the pods returned by the master is not in the
Running phase.
|
master
View source
master(
task_type=None, task_id=None, rpc_layer=None
)
Returns the master address to use when creating a session.
You must have set the task_type and task_id object properties before
calling this function, or pass in the task_type
and task_id
parameters when using this function. If you do both, the function parameters
will override the object properties.
Args |
task_type
|
(Optional) The type of the TensorFlow task of the master.
|
task_id
|
(Optional) The index of the TensorFlow task of the master.
|
rpc_layer
|
(Optional) The RPC protocol for the given cluster.
|
Returns |
The name or URL of the session master.
|
num_accelerators
View source
num_accelerators(
task_type=None, task_id=None, config_proto=None
)
Returns the number of accelerator cores per worker.
This returns the number of accelerator cores (such as GPUs and TPUs)
available per worker.
Optionally, we allow callers to specify the task_type, and task_id, for
if they want to target a specific TensorFlow process to query
the number of accelerators. This is to support heterogenous environments,
where the number of accelerators cores per host is different.
Args |
task_type
|
(Optional) The type of the TensorFlow task of the machine we
want to query.
|
task_id
|
(Optional) The index of the TensorFlow task of the machine we
want to query.
|
config_proto
|
(Optional) Configuration for starting a new session to
query how many accelerator cores it has.
|
Returns |
A map of accelerator types to number of cores.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.distribute.cluster_resolver.KubernetesClusterResolver\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/distribute/cluster_resolver/KubernetesClusterResolver) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/distribute/cluster_resolver/kubernetes_cluster_resolver.py#L35-L158) |\n\nClusterResolver for Kubernetes.\n\nInherits From: [`ClusterResolver`](../../../tf/distribute/cluster_resolver/ClusterResolver)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.distribute.cluster_resolver.KubernetesClusterResolver`](/api_docs/python/tf/distribute/cluster_resolver/KubernetesClusterResolver)\n\n\u003cbr /\u003e\n\n tf.distribute.cluster_resolver.KubernetesClusterResolver(\n job_to_label_mapping=None, tf_server_port=8470, rpc_layer='grpc',\n override_client=None\n )\n\nThis is an implementation of cluster resolvers for Kubernetes. When given the\nthe Kubernetes namespace and label selector for pods, we will retrieve the\npod IP addresses of all running pods matching the selector, and return a\nClusterSpec based on that information.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `job_to_label_mapping` | A mapping of TensorFlow jobs to label selectors. This allows users to specify many TensorFlow jobs in one Cluster Resolver, and each job can have pods belong with different label selectors. For example, a sample mapping might be \u003cbr /\u003e {'worker': ['job-name=worker-cluster-a', 'job-name=worker-cluster-b'], 'ps': ['job-name=ps-1', 'job-name=ps-2']} \u003cbr /\u003e |\n| `tf_server_port` | The port the TensorFlow server is listening on. |\n| `rpc_layer` | (Optional) The RPC layer TensorFlow should use to communicate between tasks in Kubernetes. Defaults to 'grpc'. |\n| `override_client` | The Kubernetes client (usually automatically retrieved using `from kubernetes import client as k8sclient`). If you pass this in, you are responsible for setting Kubernetes credentials manually. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|-----------------------------------------------------------------------------------------|\n| `ImportError` | If the Kubernetes Python client is not installed and no `override_client` is passed in. |\n| `RuntimeError` | If autoresolve_task is not a boolean or a callable. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `environment` | Returns the current environment which TensorFlow is running in. \u003cbr /\u003e There are two possible return values, \"google\" (when TensorFlow is running in a Google-internal environment) or an empty string (when TensorFlow is running elsewhere). If you are implementing a ClusterResolver that works in both the Google environment and the open-source world (for instance, a TPU ClusterResolver or similar), you will have to return the appropriate string depending on the environment, which you will have to detect. Otherwise, if you are implementing a ClusterResolver that will only work in open-source TensorFlow, you do not need to implement this property. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `cluster_spec`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/distribute/cluster_resolver/kubernetes_cluster_resolver.py#L122-L158) \n\n cluster_spec()\n\nReturns a ClusterSpec object based on the latest info from Kubernetes.\n\nWe retrieve the information from the Kubernetes master every time this\nmethod is called.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A ClusterSpec containing host information returned from Kubernetes. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|----------------|--------------------------------------------------------------------------|\n| `RuntimeError` | If any of the pods returned by the master is not in the `Running` phase. |\n\n\u003cbr /\u003e\n\n### `master`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/distribute/cluster_resolver/kubernetes_cluster_resolver.py#L96-L120) \n\n master(\n task_type=None, task_id=None, rpc_layer=None\n )\n\nReturns the master address to use when creating a session.\n\nYou must have set the task_type and task_id object properties before\ncalling this function, or pass in the `task_type` and `task_id`\nparameters when using this function. If you do both, the function parameters\nwill override the object properties.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-------------|------------------------------------------------------------|\n| `task_type` | (Optional) The type of the TensorFlow task of the master. |\n| `task_id` | (Optional) The index of the TensorFlow task of the master. |\n| `rpc_layer` | (Optional) The RPC protocol for the given cluster. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| The name or URL of the session master. ||\n\n\u003cbr /\u003e\n\n### `num_accelerators`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/distribute/cluster_resolver/cluster_resolver.py#L125-L160) \n\n num_accelerators(\n task_type=None, task_id=None, config_proto=None\n )\n\nReturns the number of accelerator cores per worker.\n\nThis returns the number of accelerator cores (such as GPUs and TPUs)\navailable per worker.\n\nOptionally, we allow callers to specify the task_type, and task_id, for\nif they want to target a specific TensorFlow process to query\nthe number of accelerators. This is to support heterogenous environments,\nwhere the number of accelerators cores per host is different.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------------|-------------------------------------------------------------------------------------------------|\n| `task_type` | (Optional) The type of the TensorFlow task of the machine we want to query. |\n| `task_id` | (Optional) The index of the TensorFlow task of the machine we want to query. |\n| `config_proto` | (Optional) Configuration for starting a new session to query how many accelerator cores it has. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A map of accelerator types to number of cores. ||\n\n\u003cbr /\u003e"]]