tf.keras.metrics.MeanRelativeError
Stay organized with collections
Save and categorize content based on your preferences.
Computes the mean relative error by normalizing with the given values.
Inherits From: Mean
tf.keras.metrics.MeanRelativeError(
normalizer, name=None, dtype=None
)
This metric creates two local variables, total
and count
that are used to
compute the mean relative absolute error. This average is weighted by
sample_weight
, and it is ultimately returned as mean_relative_error
:
an idempotent operation that simply divides total
by count
.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Usage:
m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3])
m.update_state([1, 3, 2, 3], [2, 4, 6, 8])
# metric = mean(|y_pred - y_true| / normalizer)
# = mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3])
# = 5/4 = 1.25
print('Final result: ', m.result().numpy()) # Final result: 1.25
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile(
'sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanRelativeError(normalizer=[1, 3])])
Args |
normalizer
|
The normalizer values with same shape as predictions.
|
name
|
(Optional) string name of the metric instance.
|
dtype
|
(Optional) data type of the metric result.
|
Methods
reset_states
View source
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps,
when a metric is evaluated during training.
result
View source
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the
metric value using the state variables.
update_state
View source
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
Args |
y_true
|
The ground truth values.
|
y_pred
|
The predicted values.
|
sample_weight
|
Optional weighting of each example. Defaults to 1. Can be a
Tensor whose rank is either 0, or the same rank as y_true , and must
be broadcastable to y_true .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.metrics.MeanRelativeError\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/metrics/MeanRelativeError) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L458-L538) |\n\nComputes the mean relative error by normalizing with the given values.\n\nInherits From: [`Mean`](../../../tf/keras/metrics/Mean)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.metrics.MeanRelativeError`](/api_docs/python/tf/keras/metrics/MeanRelativeError)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.metrics.MeanRelativeError`](/api_docs/python/tf/keras/metrics/MeanRelativeError)\n\n\u003cbr /\u003e\n\n tf.keras.metrics.MeanRelativeError(\n normalizer, name=None, dtype=None\n )\n\nThis metric creates two local variables, `total` and `count` that are used to\ncompute the mean relative absolute error. This average is weighted by\n`sample_weight`, and it is ultimately returned as `mean_relative_error`:\nan idempotent operation that simply divides `total` by `count`.\n\nIf `sample_weight` is `None`, weights default to 1.\nUse `sample_weight` of 0 to mask values.\n\n#### Usage:\n\n m = tf.keras.metrics.MeanRelativeError(normalizer=[1, 3, 2, 3])\n m.update_state([1, 3, 2, 3], [2, 4, 6, 8])\n\n # metric = mean(|y_pred - y_true| / normalizer)\n # = mean([1, 1, 4, 5] / [1, 3, 2, 3]) = mean([1, 1/3, 2, 5/3])\n # = 5/4 = 1.25\n print('Final result: ', m.result().numpy()) # Final result: 1.25\n\nUsage with tf.keras API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile(\n 'sgd',\n loss='mse',\n metrics=[tf.keras.metrics.MeanRelativeError(normalizer=[1, 3])])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|-------------------------------------------------------|\n| `normalizer` | The normalizer values with same shape as predictions. |\n| `name` | (Optional) string name of the metric instance. |\n| `dtype` | (Optional) data type of the metric result. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `reset_states`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L203-L209) \n\n reset_states()\n\nResets all of the metric state variables.\n\nThis function is called between epochs/steps,\nwhen a metric is evaluated during training.\n\n### `result`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L361-L371) \n\n result()\n\nComputes and returns the metric value tensor.\n\nResult computation is an idempotent operation that simply calculates the\nmetric value using the state variables.\n\n### `update_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/metrics.py#L504-L532) \n\n update_state(\n y_true, y_pred, sample_weight=None\n )\n\nAccumulates metric statistics.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | The ground truth values. |\n| `y_pred` | The predicted values. |\n| `sample_weight` | Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Update op. ||\n\n\u003cbr /\u003e"]]