tensorflow::
    
   ops::
    
   SparseApplyProximalGradientDescent
  
  
   #include <training_ops.h>
  
  Sparse update '*var' as FOBOS algorithm with fixed learning rate.
Summary
That is for rows we have grad for, we update var as follows:
 $$prox_v = var - alpha * grad$$ 
 
 $$var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0}$$ 
  
  Args:
- scope: A Scope object
 - var: Should be from a Variable().
 - alpha: Scaling factor. Must be a scalar.
 - l1: L1 regularization. Must be a scalar.
 - l2: L2 regularization. Must be a scalar.
 - grad: The gradient.
 - indices: A vector of indices into the first dimension of var and accum.
 
   Optional attributes (see
   
    
     Attrs
    
   
   ):
   
- use_locking: If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
 
Returns:
- 
     
Output: Same as "var". 
     Constructors and Destructors | 
   |
|---|---|
     
      
       SparseApplyProximalGradientDescent
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      var, ::
      
       tensorflow::Input
      
      alpha, ::
      
       tensorflow::Input
      
      l1, ::
      
       tensorflow::Input
      
      l2, ::
      
       tensorflow::Input
      
      grad, ::
      
       tensorflow::Input
      
      indices)
     
      | 
   |
     
      
       SparseApplyProximalGradientDescent
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      var, ::
      
       tensorflow::Input
      
      alpha, ::
      
       tensorflow::Input
      
      l1, ::
      
       tensorflow::Input
      
      l2, ::
      
       tensorflow::Input
      
      grad, ::
      
       tensorflow::Input
      
      indices, const
      
       SparseApplyProximalGradientDescent::Attrs
      
      & attrs)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       operation
      
     
     | 
    |
     
      
       out
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
     Public static functions | 
   |
|---|---|
     
      
       UseLocking
      
      (bool x)
     
     | 
    |
     Structs | 
   |
|---|---|
| 
     
      tensorflow::
       | 
    
      Optional attribute setters for SparseApplyProximalGradientDescent .  | 
   
Public attributes
Public functions
SparseApplyProximalGradientDescent
SparseApplyProximalGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyProximalGradientDescent
SparseApplyProximalGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyProximalGradientDescent::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const