tensorflow::
    
   ops::
    
   MatrixDiagPartV2
  
  
   #include <array_ops.h>
  
  Returns the batched diagonal part of a batched tensor.
Summary
   Returns a tensor with the
   
    k[0]
   
   -th to
   
    k[1]
   
   -th diagonals of the batched
   
    input
   
   .
  
   Assume
   
    input
   
   has
   
    r
   
   dimensions
   
    [I, J, ..., L, M, N]
   
   . Let
   
    max_diag_len
   
   be the maximum length among all diagonals to be extracted,
   
    max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
   
   Let
   
    num_diags
   
   be the number of diagonals to extract,
   
    num_diags = k[1] - k[0] + 1
   
   .
  
   If
   
    num_diags == 1
   
   , the output tensor is of rank
   
    r - 1
   
   with shape
   
    [I, J, ..., L, max_diag_len]
   
   and values:
  
diagonal[i, j, ..., l, n]
  = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
    padding_value                 ; otherwise.
    y = max(-k[1], 0)
   
   ,
   
    x = max(k[1], 0)
   
   .
  
  
   Otherwise, the output tensor has rank
   
    r
   
   with dimensions
   
    [I, J, ..., L, num_diags, max_diag_len]
   
   with values:
  
diagonal[i, j, ..., l, m, n]
  = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
    padding_value                 ; otherwise.
    d = k[1] - m
   
   ,
   
    y = max(-d, 0)
   
   , and
   
    x = max(d, 0)
   
   .
  
  The input must be at least a matrix.
For example:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4) [5, 6, 7, 8], [9, 8, 7, 6]], [[5, 4, 3, 2], [1, 2, 3, 4], [5, 6, 7, 8]]])
# A main diagonal from each batch. tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3) [5, 2, 7]]
# A superdiagonal from each batch. tf.matrix_diag_part(input, k = 1) ==> [[2, 7, 6], # Output shape: (2, 3) [4, 3, 8]]
# A tridiagonal band from each batch. tf.matrix_diag_part(input, k = (-1, 1)) ==> [[[2, 7, 6], # Output shape: (2, 3, 3) [1, 6, 7], [5, 8, 0]], [[4, 3, 8], [5, 2, 7], [1, 6, 0]]]
# Padding value = 9 tf.matrix_diag_part(input, k = (1, 3), padding_value = 9) ==> [[[4, 9, 9], # Output shape: (2, 3, 3) [3, 8, 9], [2, 7, 6]], [[2, 9, 9], [3, 4, 9], [4, 3, 8]]]
Args:
- scope: A Scope object
 - 
     input: Rank
     
rtensor wherer >= 2. - 
     k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
     
kcan be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band.k[0]must not be larger thank[1]. - padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.
 
Returns:
- 
     
Output: The extracted diagonal(s). 
     Constructors and Destructors | 
   |
|---|---|
     
      
       MatrixDiagPartV2
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      input, ::
      
       tensorflow::Input
      
      k, ::
      
       tensorflow::Input
      
      padding_value)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       diagonal
      
     
     | 
    |
     
      
       operation
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
Public attributes
Public functions
MatrixDiagPartV2
MatrixDiagPartV2( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input k, ::tensorflow::Input padding_value )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const