tensorflow::
    
   ops::
    
   SparseApplyAdagradDA
  
  
   #include <training_ops.h>
  
  Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
Summary
Args:
- scope: A Scope object
 - var: Should be from a Variable().
 - gradient_accumulator: Should be from a Variable().
 - gradient_squared_accumulator: Should be from a Variable().
 - grad: The gradient.
 - indices: A vector of indices into the first dimension of var and accum.
 - lr: Learning rate. Must be a scalar.
 - l1: L1 regularization. Must be a scalar.
 - l2: L2 regularization. Must be a scalar.
 - global_step: Training step number. Must be a scalar.
 
   Optional attributes (see
   
    
     Attrs
    
   
   ):
   
- use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
 
Returns:
- 
     
Output: Same as "var". 
     Constructors and Destructors | 
   |
|---|---|
     
      
       SparseApplyAdagradDA
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      var, ::
      
       tensorflow::Input
      
      gradient_accumulator, ::
      
       tensorflow::Input
      
      gradient_squared_accumulator, ::
      
       tensorflow::Input
      
      grad, ::
      
       tensorflow::Input
      
      indices, ::
      
       tensorflow::Input
      
      lr, ::
      
       tensorflow::Input
      
      l1, ::
      
       tensorflow::Input
      
      l2, ::
      
       tensorflow::Input
      
      global_step)
     
      | 
   |
     
      
       SparseApplyAdagradDA
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      var, ::
      
       tensorflow::Input
      
      gradient_accumulator, ::
      
       tensorflow::Input
      
      gradient_squared_accumulator, ::
      
       tensorflow::Input
      
      grad, ::
      
       tensorflow::Input
      
      indices, ::
      
       tensorflow::Input
      
      lr, ::
      
       tensorflow::Input
      
      l1, ::
      
       tensorflow::Input
      
      l2, ::
      
       tensorflow::Input
      
      global_step, const
      
       SparseApplyAdagradDA::Attrs
      
      & attrs)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       operation
      
     
     | 
    |
     
      
       out
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
     Public static functions | 
   |
|---|---|
     
      
       UseLocking
      
      (bool x)
     
     | 
    |
     Structs | 
   |
|---|---|
| 
     
      tensorflow::
       | 
    
      Optional attribute setters for SparseApplyAdagradDA .  | 
   
Public attributes
Public functions
SparseApplyAdagradDA
SparseApplyAdagradDA( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input gradient_accumulator, ::tensorflow::Input gradient_squared_accumulator, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input global_step )
SparseApplyAdagradDA
SparseApplyAdagradDA( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input gradient_accumulator, ::tensorflow::Input gradient_squared_accumulator, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input global_step, const SparseApplyAdagradDA::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const