tensorflow::
    
   ops::
    
   Fill
  
  
   #include <array_ops.h>
  
  Creates a tensor filled with a scalar value.
Summary
   This operation creates a tensor of shape
   
    dims
   
   and fills it with
   
    value
   
   .
  
For example:
# Output tensor has shape [2, 3]. fill([2, 3], 9) ==> [[9, 9, 9] [9, 9, 9]]
   
    tf.fill
   
   differs from
   
    tf.constant
   
   in a few ways:
  
- 
     
tf.fillonly supports scalar contents, whereastf.constantsupports Tensor values. - 
     
tf.fillcreates an Op in the computation graph that constructs the actual Tensor value at runtime. This is in contrast totf.constantwhich embeds the entire Tensor into the graph with aConstnode. - 
     Because
     
tf.fillevaluates at graph runtime, it supports dynamic shapes based on other runtime Tensors, unliketf.constant. 
Args:
- scope: A Scope object
 - dims: 1-D. Represents the shape of the output tensor.
 - value: 0-D (scalar). Value to fill the returned tensor.
 
(numpy) Equivalent to np.full
Returns:
- 
     
Output: The output tensor. 
     Constructors and Destructors | 
   |
|---|---|
     
      
       Fill
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      dims, ::
      
       tensorflow::Input
      
      value)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       operation
      
     
     | 
    |
     
      
       output
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const