tensorflow::
    
   ops::
    
   MatrixDiagV2
  
  
   #include <array_ops.h>
  
  Returns a batched diagonal tensor with given batched diagonal values.
Summary
   Returns a tensor with the contents in
   
    diagonal
   
   as
   
    k[0]
   
   -th to
   
    k[1]
   
   -th diagonals of a matrix, with everything else padded with
   
    padding
   
   .
   
    num_rows
   
   and
   
    num_cols
   
   specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix is square and infers its size from
   
    k
   
   and the innermost dimension of
   
    diagonal
   
   . If only one of them is specified, the op assumes the unspecified value is the smallest possible based on other criteria.
  
   Let
   
    diagonal
   
   have
   
    r
   
   dimensions
   
    [I, J, ..., L, M, N]
   
   . The output tensor has rank
   
    r+1
   
   with shape
   
    [I, J, ..., L, M, num_rows, num_cols]
   
   when only one diagonal is given (
   
    k
   
   is an integer or
   
    k[0] == k[1]
   
   ). Otherwise, it has rank
   
    r
   
   with shape
   
    [I, J, ..., L, num_rows, num_cols]
   
   .
  
   The second innermost dimension of
   
    diagonal
   
   has double meaning. When
   
    k
   
   is scalar or
   
    k[0] == k[1]
   
   ,
   
    M
   
   is part of the batch size [I, J, ..., M], and the output tensor is:
  
output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
    padding_value                             ; otherwise
   Otherwise,
   
    M
   
   is treated as the number of diagonals for the matrix in the same batch (
   
    M = k[1]-k[0]+1
   
   ), and the output tensor is:
  
output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
    padding_value                                     ; otherwise
    d = n - m
   
   ,
   
    diag_index = k[1] - d
   
   , and
   
    index_in_diag = n - max(d, 0)
   
   .
  
  For example:
# The main diagonal. diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4) [5, 6, 7, 8]]) tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4) [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], [[5, 0, 0, 0], [0, 6, 0, 0], [0, 0, 7, 0], [0, 0, 0, 8]]]
# A superdiagonal (per batch). diagonal = np.array([[1, 2, 3], # Input shape: (2, 3) [4, 5, 6]]) tf.matrix_diag(diagonal, k = 1) ==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4) [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]], [[0, 4, 0, 0], [0, 0, 5, 0], [0, 0, 0, 6], [0, 0, 0, 0]]]
# A band of diagonals. diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3) [4, 5, 0]], [[6, 7, 9], [9, 1, 0]]]) tf.matrix_diag(diagonals, k = (-1, 0)) ==> [[[1, 0, 0], # Output shape: (2, 3, 3) [4, 2, 0], [0, 5, 3]], [[6, 0, 0], [9, 7, 0], [0, 1, 9]]]
# Rectangular matrix. diagonal = np.array([1, 2]) # Input shape: (2) tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4) ==> [[0, 0, 0, 0], # Output shape: (3, 4) [1, 0, 0, 0], [0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9. tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9) ==> [[9, 9], # Output shape: (3, 2) [1, 9], [9, 2]]
Args:
- scope: A Scope object
 - 
     diagonal: Rank
     
r, wherer >= 1 - 
     k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
     
kcan be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band.k[0]must not be larger thank[1]. - 
     num_rows: The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of
     
diagonal. - 
     num_cols: The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of
     
diagonal. - padding_value: The number to fill the area outside the specified diagonal band with. Default is 0.
 
Returns:
- 
     
Output: Has rankr+1whenkis an integer ork[0] == k[1], rankrotherwise. 
     Constructors and Destructors | 
   |
|---|---|
     
      
       MatrixDiagV2
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      diagonal, ::
      
       tensorflow::Input
      
      k, ::
      
       tensorflow::Input
      
      num_rows, ::
      
       tensorflow::Input
      
      num_cols, ::
      
       tensorflow::Input
      
      padding_value)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       operation
      
     
     | 
    |
     
      
       output
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
Public attributes
Public functions
MatrixDiagV2
MatrixDiagV2( const ::tensorflow::Scope & scope, ::tensorflow::Input diagonal, ::tensorflow::Input k, ::tensorflow::Input num_rows, ::tensorflow::Input num_cols, ::tensorflow::Input padding_value )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const