tensorflow::
    
   ops::
    
   Dequantize
  
  
   #include <array_ops.h>
  
  Dequantize the 'input' tensor into a float or bfloat16 Tensor .
Summary
[min_range, max_range] are scalar floats that specify the range for the output. The 'mode' attribute controls exactly which calculations are used to convert the float values to their quantized equivalents.
In 'MIN_COMBINED' mode, each value of the tensor will undergo the following:
if T == qint8: in[i] += (range(T) + 1)/ 2.0 out[i] = min_range + (in[i]* (max_range - min_range) / range(T))
    range(T) = numeric_limits
    
     ::max() - numeric_limits
     
      ::min()
      
     
   
  
  MIN_COMBINED Mode Example
If the input comes from a QuantizedRelu6 , the output type is quint8 (range of 0-255) but the possible range of QuantizedRelu6 is 0-6. The min_range and max_range values are therefore 0.0 and 6.0. Dequantize on quint8 will take each value, cast to float, and multiply by 6 / 255. Note that if quantizedtype is qint8, the operation will additionally add each value by 128 prior to casting.
If the mode is 'MIN_FIRST', then this approach is used:
num_discrete_values = 1 << (# of bits in T) range_adjust = num_discrete_values / (num_discrete_values - 1) range = (range_max - range_min) * range_adjust range_scale = range / num_discrete_values const double offset_input = static_cast(input) - lowest_quantized; result = range_min + ((input - numeric_limits ::min()) * range_scale) 
   If the mode is
   
    SCALED
   
   , dequantization is performed by multiplying each input value by a scaling_factor. (Thus an input of 0 always maps to 0.0).
  
   The scaling_factor is determined from
   
    min_range
   
   ,
   
    max_range
   
   , and
   
    narrow_range
   
   in a way that is compatible with
   
    QuantizeAndDequantize{V2|V3}
   
   and
   
    
     QuantizeV2
    
   
   , using the following algorithm:
  
const int min_expected_T = std::numeric_limits::min() + (narrow_range ? 1 : 0); const int max_expected_T = std::numeric_limits ::max(); const float max_expected_T = std::numeric_limits ::max(); 
const float scale_factor = (std::numeric_limits::min() == 0) ? (max_range / max_expected_T) : std::max(min_range / min_expected_T, max_range / max_expected_T); 
Args:
- scope: A Scope object
 - min_range: The minimum scalar value possibly produced for the input.
 - max_range: The maximum scalar value possibly produced for the input.
 
   Optional attributes (see
   
    
     Attrs
    
   
   ):
   
- dtype: Type of the output tensor. Currently Dequantize supports float and bfloat16. If 'dtype' is 'bfloat16', it only supports 'MIN_COMBINED' mode.
 
Returns:
- 
     
Output: The output tensor. 
     Constructors and Destructors | 
   |
|---|---|
     
      
       Dequantize
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      input, ::
      
       tensorflow::Input
      
      min_range, ::
      
       tensorflow::Input
      
      max_range)
     
      | 
   |
     
      
       Dequantize
      
      (const ::
      
       tensorflow::Scope
      
      & scope, ::
      
       tensorflow::Input
      
      input, ::
      
       tensorflow::Input
      
      min_range, ::
      
       tensorflow::Input
      
      max_range, const
      
       Dequantize::Attrs
      
      & attrs)
     
      | 
   
     Public attributes | 
   |
|---|---|
     
      
       operation
      
     
     | 
    |
     
      
       output
      
     
     | 
    |
     Public functions | 
   |
|---|---|
     
      
       node
      
      () const
     
     | 
    
     
       ::tensorflow::Node *
      
      | 
   
     
      
       operator::tensorflow::Input
      
      () const
     
     | 
    
     
      
      | 
   
     
      
       operator::tensorflow::Output
      
      () const
     
     | 
    
     
      
      | 
   
     Public static functions | 
   |
|---|---|
     
      
       Axis
      
      (int64 x)
     
     | 
    |
     
      
       Dtype
      
      (DataType x)
     
     | 
    |
     
      
       Mode
      
      (StringPiece x)
     
     | 
    |
     
      
       NarrowRange
      
      (bool x)
     
     | 
    |
     Structs | 
   |
|---|---|
| 
     
      tensorflow::
       | 
    
      Optional attribute setters for Dequantize .  | 
   
Public attributes
Public functions
Dequantize
Dequantize( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input min_range, ::tensorflow::Input max_range )
Dequantize
Dequantize( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input min_range, ::tensorflow::Input max_range, const Dequantize::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const