View source on GitHub |
Context manager for tensorflow-transform.
tft_beam.Context(
temp_dir: Optional[str] = None,
desired_batch_size: Optional[int] = None,
passthrough_keys: Optional[Iterable[str]] = None,
use_deep_copy_optimization: Optional[bool] = None,
force_tf_compat_v1: Optional[bool] = None,
save_options: Optional[tf.saved_model.SaveOptions] = None
)
All the attributes in this context are kept on a thread local state. Note that the temp dir should be accessible to worker jobs, e.g. if running with the Cloud Dataflow runner, the temp dir should be on GCS and should have permissions that allow both launcher and workers to access it.
Methods
create_base_temp_dir
@classmethod
create_base_temp_dir() -> str
Generate a temporary location.
get_desired_batch_size
@classmethod
get_desired_batch_size() -> Optional[int]
Retrieves a user set fixed batch size, None if not set.
get_passthrough_keys
@classmethod
get_passthrough_keys() -> Iterable[str]
Retrieves a user set passthrough_keys, None if not set.
get_save_options
@classmethod
get_save_options() -> Optional[tf.saved_model.SaveOptions]
Retrieves a user set save_options, None if not set.
get_use_deep_copy_optimization
@classmethod
get_use_deep_copy_optimization() -> bool
Retrieves a user set use_deep_copy_optimization, None if not set.
get_use_tf_compat_v1
@classmethod
get_use_tf_compat_v1() -> bool
Computes use_tf_compat_v1 from TF environment and force_tf_compat_v1.
__enter__
__enter__()
__exit__
__exit__(
*exn_info
)